scholarly journals Antibacterial activity of artocarpanone isolated from Artocarpus heterophyllus heartwoods against diarrheal pathogens and its mechanism of action on membrane permeability

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abdi Wira Septama ◽  
Eldiza Puji Rahmi ◽  
Lucia Dwi Antika ◽  
Rizna Triana Dewi ◽  
Amit Jaisi

Abstract The emergence of antibacterial resistance has significantly increased. Pseudomonas aeruginosa is associated with nosocomial infection and difficult to control. Artocarpin, a flavonoid from Artocarpus heterophyllus Lam. exhibits several pharmacological properties including antibacterial. The study was performed to evaluate interaction between artocarpin and antibiotics including tetracycline against P. aeruginosa. Its mechanism of action on membrane permeability was also investigated. Broth microdilution was conducted for the susceptibility assay. The interaction of artocarpin and antibiotics was evaluated using checkerboard method, the effect on alteration of membrane cell was investigated using bacteriolysis and the released of 260 nm materials. Artocarpin showed moderate to weak activity against the Gram-negative bacteria including P. aeruginosa with MIC values in the range of 31.25–250 μg/mL. A synergistic effect against P. aeruginosa was produced by the combination of artocarpin (31.25 μg/mL) and tetracycline (1.95 μg/mL) with FICI of 0.37. The time-killing assay showed that artocarpin enhance the antibacterial activity of tetracycline against P. aeruginosa by completely inhibiting the bacterial growth. Additionally, the mixture of artocarpin (31.25 μg/mL) and tetracycline (1.95 μg/mL) disrupted membrane permeability and lead to cell death. These results proposed that the combination of artocarpin and tetracycline may be used to overcome P. aeruginosa infection.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2931
Author(s):  
Przemysław Siejak ◽  
Wojciech Smułek ◽  
Farahnaz Fathordobady ◽  
Anna Grygier ◽  
Hanna Maria Baranowska ◽  
...  

To meet the growing interest in natural antibacterial agents, we evaluated the physicochemical and biological properties of the folk medicine known as “five thieves’ oil” (Polish name: olejek pięciu złodziei). Five thieves’ oil consists of a mixture of five oils: rosemary, lemon, clove, eucalyptus, and cinnamon. In this study, we performed gas chromatography, FTIR, and UV–vis spectroscopic analysis, as well as L-a-b color tests, contact angle determination, and surface tension determination. To verify its antibacterial activity, the metabolic activity and changes in cell membrane permeability of bacteria of the genus Pseudomonas were studied. As a result, it was found that among the constituent oils, the oils of clove and cinnamon were the least volatile and, at the same time, had the strongest antibacterial activity. However, a mix of all the oils also showed comparable activity, which was even more pronounced for the oils after 4 weeks of aging. This effect can be linked to the high content of terpene derivatives such as eugenol and cinnamaldehyde, which can cause changes in bacterial membrane permeability, affecting cell activity and survival. This study is the first to characterize the constituents of the popular folk medicine five thieves’ oil, confirming and explaining its strong antibacterial activity, thus constituting a significant contribution to contemporary health education.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


2018 ◽  
Vol 13 (14) ◽  
pp. 1585-1601 ◽  
Author(s):  
Carlos HG Martins ◽  
Fariza Abrão ◽  
Thaís S Moraes ◽  
Pollyanna F Oliveira ◽  
Denise C Tavares ◽  
...  

2018 ◽  
Vol 73 (8) ◽  
pp. 2054-2063 ◽  
Author(s):  
Jonggwan Park ◽  
Hee Kyoung Kang ◽  
Moon-Chang Choi ◽  
Jeong Don Chae ◽  
Byoung Kwan Son ◽  
...  

Food Control ◽  
2019 ◽  
Vol 95 ◽  
pp. 115-120 ◽  
Author(s):  
Guilherme da Silva Dannenberg ◽  
Graciele Daiana Funck ◽  
Wladimir Padilha da Silva ◽  
Ângela Maria Fiorentini

Sign in / Sign up

Export Citation Format

Share Document