terpene derivatives
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 1)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 161
Author(s):  
Reza Zeinali ◽  
Luis J. del Valle ◽  
Lourdes Franco ◽  
Ibraheem Yousef ◽  
Jeroen Rintjema ◽  
...  

Different copolymers incorporating terpene oxide units (e.g., limonene oxide) have been evaluated considering thermal properties, degradability, and biocompatibility. Thus, polycarbonates and polyesters derived from aromatic, monocyclic and bicyclic anhydrides have been considered. Furthermore, ring substitution with myrcene terpene has been evaluated. All polymers were amorphous when evaluated directly from synthesis. However, spherulites could be observed after the slow evaporation of diluted chloroform solutions of polylimonene carbonate, with all isopropene units possessing an R configuration. This feature was surprising considering the reported information that suggested only the racemic polymer was able to crystallize. All polymers were thermally stable and showed a dependence of the maximum degradation rate temperature (from 242 °C to 342 °C) with the type of terpene oxide. The graduation of glass transition temperatures (from 44 °C to 172 °C) was also observed, being higher than those corresponding to the unsubstituted polymers. The chain stiffness of the studied polymers hindered both hydrolytic and enzymatic degradation while a higher rate was detected when an oxidative medium was assayed (e.g., weight losses around 12% after 21 days of exposure). All samples were biocompatible according to the adhesion and proliferation tests performed with fibroblast cells. Hydrophobic and mechanically consistent films (i.e., contact angles between 90° and 110°) were obtained after the evaporation of chloroform from the solutions, having different ratios of the studied biobased polyterpenes and poly(butylene succinate) (PBS). The blend films were comparable in tensile modulus and tensile strength with the pure PBS (e.g., values of 330 MPa and 7 MPa were determined for samples incorporating 30 wt.% of poly(PA-LO), the copolyester derived from limonene oxide and phthalic anhydride. Blends were degradable, biocompatible and appropriate to produce oriented-pore and random-pore scaffolds via a thermally-induced phase separation (TIPS) method and using 1,4-dioxane as solvent. The best results were attained with the blend composed of 70 wt.% PBS and 30 wt.% poly(PA-LO). In summary, the studied biobased terpene derivatives showed promising properties to be used in a blended form for biomedical applications such as scaffolds for tissue engineering.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5928
Author(s):  
Lucía Castro-Vázquez ◽  
María Victoria Lozano ◽  
Virginia Rodríguez-Robledo ◽  
Joaquín González-Fuentes ◽  
Pilar Marcos ◽  
...  

Orange peel by-products generated in the food industry are an important source of value-added compounds that can be potentially reused. In the current research, the effect of oven-drying (50–70 °C) and freeze-drying on the bioactive compounds and antioxidant potential from Navelina, Salustriana, and Sanguina peel waste was investigated using pressurized extraction (ASE). Sixty volatile components were identified by ASE-GC-MS. The levels of terpene derivatives (sesquitenenes, alcohols, aldehydes, hydrocarbons, and esters) remained practically unaffected among fresh and freeze-dried orange peels, whereas drying at 70 °C caused significative decreases in Navelina, Salustriana, and Sanguina peels. Hesperidin and narirutin were the main flavonoids quantified by HPLC-MS. Freeze-dried Sanguina peels showed the highest levels of total-polyphenols (113.3 mg GAE·g−1), total flavonoids (39.0 mg QE·g−1), outstanding values of hesperedin (187.6 µg·g−1), phenol acids (16.54 mg·g−1 DW), and the greatest antioxidant values (DPPH•, FRAP, and ABTS•+ assays) in comparison with oven-dried samples and the other varieties. Nanotechnology approaches allowed the formulation of antioxidant-loaded nanoemulsions, stabilized with lecithin, starting from orange peel extracts. Those provided 70–80% of protection against oxidative UV-radiation, also decreasing the ROS levels into the Caco-2 cells. Overall, pressurized extracts from freeze-drying orange peel can be considered a good source of natural antioxidants that could be exploited in food applications for the development of new products of commercial interest.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5480
Author(s):  
Pavel B. Drasar ◽  
Vladimir A. Khripach

This current Special Issue of Molecules gathers selected communications on terpenes and terpene derivatives, clearly demonstrating the sustained interest in and importance of natural products in this field; fields connected to secondary metabolites; and renewable resources of plant and animal compounds for medicinal, material, supramolecular, and general chemistry research [...]


2021 ◽  
pp. 120593
Author(s):  
O.A. Zalevskaya ◽  
Y.A. Gur'eva ◽  
A.V. Kutchin ◽  
Yu.R. Aleksandrova ◽  
E.Yu. Yandulova ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2931
Author(s):  
Przemysław Siejak ◽  
Wojciech Smułek ◽  
Farahnaz Fathordobady ◽  
Anna Grygier ◽  
Hanna Maria Baranowska ◽  
...  

To meet the growing interest in natural antibacterial agents, we evaluated the physicochemical and biological properties of the folk medicine known as “five thieves’ oil” (Polish name: olejek pięciu złodziei). Five thieves’ oil consists of a mixture of five oils: rosemary, lemon, clove, eucalyptus, and cinnamon. In this study, we performed gas chromatography, FTIR, and UV–vis spectroscopic analysis, as well as L-a-b color tests, contact angle determination, and surface tension determination. To verify its antibacterial activity, the metabolic activity and changes in cell membrane permeability of bacteria of the genus Pseudomonas were studied. As a result, it was found that among the constituent oils, the oils of clove and cinnamon were the least volatile and, at the same time, had the strongest antibacterial activity. However, a mix of all the oils also showed comparable activity, which was even more pronounced for the oils after 4 weeks of aging. This effect can be linked to the high content of terpene derivatives such as eugenol and cinnamaldehyde, which can cause changes in bacterial membrane permeability, affecting cell activity and survival. This study is the first to characterize the constituents of the popular folk medicine five thieves’ oil, confirming and explaining its strong antibacterial activity, thus constituting a significant contribution to contemporary health education.


2021 ◽  
Vol 15 (4) ◽  
pp. 219-242
Author(s):  
Fatma M. Abdel Bar

Plants of the genus Melaleuca which belong to family Myrtaceae, commonly named "tea trees”, are economically important plants. When talking about tea trees, the essential oils are the center of attention, leaving all other phytoconstituents in their shade. Many reviews addressed the composition and pharmacological activities of Melaleuca alternifolia L. essential oil as the most common one. To date, there are no detailed reviews summarizing the phytochemical and pharmacological properties of the non-volatile components of members of the genus Melaleuca. After distillation of the volatile oil, large amounts of these plants’ waste remain untapped. This review indicates that this genus is a rich source of diverse groups of bioactive phytochemicals, including flavonoids, triterpenoids, benzylic phloroglucinol-terpene derivatives, polyphenols, hydrolysable tannins, and other compounds. It also discusses the diverse pharmacological activities reported for plants of this genus.


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 35
Author(s):  
Mohamed Shaaban ◽  
Ghada S. E. Abou-El-Wafa ◽  
Christopher Golz ◽  
Hartmut Laatsch

Analysis of the air-dried marine red alga Laurencia papillosa, collected near Ras-Bakr at the Suez gulf (Red Sea) in Egypt delivered five new halogenated terpene derivatives: aplysiolic acid (1), 7-acetyl-aplysiol (2), aplysiol-7-one (3), 11,14-dihydroaplysia-5,11,14,15-tetrol (5a), and a new maneonene derivative 6, named 5-epi-maneolactone. The chemical structures of these metabolites were characterized employing spectroscopic methods, and the relative and absolute configurations were determined by comparison of experimental and ab initio-calculated NMR, NOE, ECD, and ORD data, and by X-ray diffraction of 2 and 6. The antimicrobial activities of the crude extract and compounds 1–3, 5a and 6 were studied.


2021 ◽  
Vol 19 (1) ◽  
pp. 1193-1201
Author(s):  
Mariia Nesterkina ◽  
Viacheslav Muratov ◽  
Luidmyla Ognichenko ◽  
Iryna Kravchenko ◽  
Victor Kuz’min

Abstract Quantitative structure–activity relationship (QSAR) study has been conducted on 36 terpene derivatives with anticonvulsant activity in timed pentylenetetrazole (PTZ) infusion test. QSAR models for anticonvulsant activity prediction of hydrazones and esters of some monocyclic/bicyclic terpenoids were developed using simplex representation of molecular structure (SiRMS; informational field [IF]) approach based on the SiRMS and the IF of molecule. Four 2D partial least squares QSAR consensus models were developed with the coefficient of determination for test sets R test 2 > 0.62 {R}_{\text{test}}^{2}\gt 0.62 . Based on the established QSAR models, we found that carvone and verbenone cores possess the most significant contribution to antiseizure action examined on the model of PTZ-induced convulsions at 3 and 24 h after oral administration of terpene derivatives. Moreover, carbonyl and hydroxy group substitution in terpenoid molecules followed by hydrazones and esters formation leads to enhancement and prolongation of antiseizure action due to the contribution of additional molecular fragments. The presented QSAR models might be utilized to predict anticonvulsant effect among terpene derivatives for their oral administration against onset seizures.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1582
Author(s):  
Dmitriy N. Shurpik ◽  
Alan A. Akhmedov ◽  
Peter J. Cragg ◽  
Vitaliy V. Plemenkov ◽  
Ivan I. Stoikov

In the last decade, the chemistry of meroterpenoids—conjugated molecules formed from isoprenyl fragments through biosynthetic pathways—has developed rapidly. The class includes some natural metabolites and fully synthetic fragments formed through nonbiological synthesis. In the field of synthetic receptors, a range of structures can be achieved by combining fragments of different classes of organic compounds into one hybrid macrocyclic platform which retains the properties of these fragments. This review discusses the successes in the synthesis and practical application of both natural and synthetic macrocycles. Among the natural macrocyclic meroterpenoids, special attention is paid to isoprenylated flavonoids and phenols, isoprenoid lipids, prenylated amino acids and alkaloids, and isoprenylpolyketides. Among the synthetic macrocyclic meroterpenoids obtained by combining the “classical” macrocyclic platforms, those based on cyclodextrins, together with meta- and paracyclophanes incorporating terpenoid fragments, and meroterpenoids obtained by macrocyclization of several terpene derivatives are considered. In addition, issues related to biomedical activity, processes of self-association and aggregation, and the formation of host–guest complexes of various classes of macrocyclic merotenoids are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document