scholarly journals Comparative dissolution and polymorphism study of clopidogrel bisulfate tablets available in Argentine

Author(s):  
Farfan Silvia ◽  
Valdez Marina Marcos ◽  
Fandino Octavio ◽  
Sperandeo Norma ◽  
Faudone Sonia
Author(s):  
JOSE RAUL MEDINA LOPEZ ◽  
LUIS DANIEL MAZON ROMAN ◽  
JUAN MANUEL CONTRERAS JIMENEZ ◽  
JUAN CARLOS RUIZ-SEGURA

Objective: The aim of this study was to carry out comparative dissolution studies with warfarin sodium reference tablets under the hydrodynamic environments generated by the USP basket and paddle apparatus and flow-through cell using different agitation rates and dissolution media. Methods: Dissolution profiles were obtained with the USP basket and paddle apparatus at 50, 75, and 100 rpm and 900 ml of water as dissolution medium. After this, dissolution profiles of warfarin sodium were obtained with the USP paddle apparatus and flow-through cell method using 0.1 N hydrochloric acid, acetate buffer pH 4.5, phosphate buffer pH 6.8, and water. Spectrophotometric determination at 308 nm was carried out during 30 min. Dissolution profiles were compared with model-independent and model-dependent approaches. Results: Significant differences were found with mean dissolution time and dissolution efficiency at 50 and 75 rpm (*P<0.05). Makoid-Banakar was the best-fit model used to describe the in vitro release performance of warfarin sodium with 50-100 rpm and the USP basket and paddle apparatuses. Significant differences in all calculated parameters were found (*P<0.05) excepting percent dissolved at 30 min with 0.1 N hydrochloric acid and phosphate buffer pH 6.8. Conclusion: More research is necessary to identify the in vitro release performance of poorly soluble drugs under available USP apparatuses considering factors as agitation rate and kind of dissolution media. The knowledge of the in vitro release performance of reference drug products is important for the design of better generic formulations


2019 ◽  
Vol 62 (4) ◽  
Author(s):  
Mariana Dolores ◽  
Alma Villaseñor ◽  
Alma Revilla Vázquez ◽  
Helgi Jung ◽  
Victor Hugo Santiago Rios ◽  
...  

Abstract. Curcumin has gained great attention in the last decades due to its fascinating properties for humans, such as anti-inflammatory or as cytotoxic against cancer. These effects are also claimed for pets such as cats and dogs, where curcumin administration is a daily practice routine. However, curcumin presents poor oral bioavailability, driving scientists to look for new delivery systems. In the last decades, several analytical methods for the quantification of curcumin in plasma have been published. To our knowledge there are no published reports on the effect of the level of hemolysis in the determination of this compound. In the present paper, a highly specific, sensitive and selective method is presented using Molecular Reaction Monitoring (SRM) using positive ionization (ESI+) mode. Curcumin and clopidogrel bisulfate – used as internal standard (IS) – were separated on an Acquity UPLC BECH Shield RP 18 column (1.7µm, 2.1 X 100mm) with 0.1% formic acid in acetonitrile and water in proportion of 60:40 (v/v). The analyte transitions were 369.3→177.06 m/z for curcumin and 322→212.05 m/z for IS. The method was fully validated and showed good linearity (R2 ≥ 0.999) over the range of 3-160 ng/mL. The Relative Standard Deviation (RSD) were less than 6% for intra-and inter-day analysis and recovery spanned 85-95%. We proved that the degree of hemolysis impaired curcumin quantitation. This method was applied to test curcumin bioavailability in both a mucoadhesive nanocapsule formulation and traditional capsules in dogs that attended routine veterinary consultation.Resumen. La curcumina ha ganado gran atención en las últimas décadas debido a sus propiedades terapéuticas para los humanos, como antiinflamatorio o citotóxico contra el cáncer. Estos efectos también se observan en pequeñas especies como gatos y perros, donde la administración de curcumina se ha vuelto una alternativa. Sin embargo, la curcumina presenta una baja biodisponibilidad oral, lo que impulsa a los científicos a buscar nuevos sistemas de administración. En las últimas décadas, se han publicado varios métodos analíticos para la cuantificación de curcumina en plasma. Actualmente, no hay informes publicados sobre el efecto del grado de hemólisis en la determinación de este compuesto. En este trabajo se desarrolló un método específico, sensible y selectivo utilizando el Monitoreo de reacción seleccionado (SRM) en modo de ionización positiva (ESI +). La curcumina y el bisulfato de clopidogrel, utilizado como patrón interno (IS), se separaron en una columna Acquity UPLC BECH Shield RP 18 (1,7 μm, 2,1 X 100 mm) con ácido fórmico al 0,1% en acetonitrilo y agua a una proporción de 60:40 (v/v). Las transiciones de los analitos fueron 369.3 → 177.06 m/z para curcumina y 322 → 212.05 m/z para IS. El método fue validado y demostró ser lineal (r2 ≥ 0.999) en el rango de 3-160 ng/mL. La desviación relativa estándar (RSD) fue inferior al 6% para el análisis intra e interdía y el porcentaje de recuperación fue 85-95%. Se descubrió que el grado de hemólisis afecta la cuantificación de curcumina. El método desarrollado se aplicó para evaluar la biodisponibilidad de curcumina tanto en una formulación de nanocápsulas mucoadhesivas como en cápsulas tradicionales en perros que asistieron a consultas veterinarias de rutina.


2019 ◽  
Vol 14 (6) ◽  
pp. 951-957
Author(s):  
G. V. Ramenskaya ◽  
I. E. Shokhin ◽  
N. I. Gaponova ◽  
V. R. Abdrakhmanov

Aim. Investigation of comparative dissolution kinetics of generic medicinal products containing moxonidine versus reference drug. Material and methods. Objects of the research were film-coated tablets containing moxonidine (INN) in a dose 0.4 mg: a reference drug Physiotens® and 4 generic drugs. In vitro dissolution test of moxonidine from the study drugs was performed using comparative dissolution kinetics test (CDKT). The CDKT was performed in the media with the following pH: 1.2 (1:9 mixture of 0.1 M hydrochloric acid and water), 4.5 (acetate buffer solution, prepared as per State Pharmacopoeia, XIII), and 6.8 (phosphate buffer solution, prepared as per State Pharmacopoeia, XIII). The sampling for dissolved moxonidine was performed 5, 10, 15, 20, and 30 min after the test was started. An high performance liquid chromatography method with ultraviolet detection at 220 nm was used to assay. Results. Within 15 min more that 85% of moxonidine dissolved from the reference drug and all study drugs at pH 1.2; dissolution profiles were similar without calculation of similarity factor f2. Similarly, at pH 4.5 dissolution profiles of study drugs #2 and #3 were similar to that of the reference drug, and the similarity factor f2 was not calculated. However, in case of study drugs #1 and #4 significant differences were observed at a single time point (15 min), which suggests that their dissolution profiles are non-similar to that of the reference drug. Similarity factors f2 were calculated 17.52 and 35.30, respectively (less than 50). At pH 6.8 similarity factors f2 for all study generic drugs were also less than 50 (23.8, 49.8, 38.6, and 35.9), so their dissolution curves were non-similar to that of reference drug. Conclusion. In our study we observed difference in release in vitro of medicinal products containing moxonidines: none of the study drugs was fully similar to the reference drug in all media. The differences observed at pH 6.8 were noteworthy, where the samples had or faster kinetics (study drugs #2 and #3), or slower dissolution kinetics (test drugs #1 and #4). Observed differences in moxonidine release rate may impact absorption of active pharmaceutical ingredient into the blood following drug administration.


Sign in / Sign up

Export Citation Format

Share Document