Effect of a Low-Carbohydrate Diet on Appetite, Blood Glucose Levels, and Insulin Resistance in Obese Patients with Type 2 Diabetes

2005 ◽  
Vol 142 (6) ◽  
pp. 403 ◽  
Author(s):  
Guenther Boden ◽  
Karin Sargrad ◽  
Carol Homko ◽  
Maria Mozzoli ◽  
T. Peter Stein
2020 ◽  
Vol 8 (1) ◽  
pp. e001303
Author(s):  
Toru Kusakabe ◽  
Shigefumi Yokota ◽  
Mika Shimizu ◽  
Takayuki Inoue ◽  
Masashi Tanaka ◽  
...  

IntroductionTreatment using sodium-glucose cotransporter (SGLT) 2 inhibitor and low-carbohydrate diet (LCD) for obesity and type 2 diabetes are similar in terms of carbohydrate limitation. However, their mechanisms of action differ, and the effects on the body remain unclear. We investigated the effects of SGLT2 inhibitor and LCD on body composition and metabolic profile using the db/db mouse model for obesity and type 2 diabetes.Research design and methodsEight-week-old male db/db mice were divided into four groups: mice receiving normal diet and vehicle or canagliflozin (Cana) administration and mice receiving LCD and vehicle or Cana administration for 8 weeks. Consumed calories were adjusted to be equal among the groups.ResultsBoth Cana administration and LCD feeding resulted in significant weight gain. Cana administration significantly decreased plasma glucose levels and increased plasma insulin levels with preservation of pancreatic β cells. However, LCD feeding did not improve plasma glucose levels but deteriorated insulin sensitivity. LCD feeding significantly reduced liver weight and hepatic triglyceride content; these effects were not observed with Cana administration. Combined treatment with LCD did not lead to an additive increase in blood β-ketone levels.ConclusionsSGLT2 inhibitors and LCD exert differential effects on the body. Their combined use may achieve better metabolic improvements in obesity and type 2 diabetes.


2019 ◽  
Vol 20 (15) ◽  
pp. 3699 ◽  
Author(s):  
Norikiyo Honzawa ◽  
Kei Fujimoto ◽  
Tadahiro Kitamura

To date, type 2 diabetes is considered to be a “bi-hormonal disorder” rather than an “insulin-centric disorder,” suggesting that glucagon is as important as insulin. Although glucagon increases hepatic glucose production and blood glucose levels, paradoxical glucagon hypersecretion is observed in diabetes. Recently, insulin resistance in pancreatic α cells has been proposed to be associated with glucagon dysregulation. Moreover, cell autonomous dysfunction of α cells is involved in the etiology of diabetes. In this review, we summarize the current knowledge about the physiological and pathological roles of glucagon.


1970 ◽  
Vol 5 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Alexandre de Souza E Silva ◽  
Maria Paula Gonçalves Mota

O trabalho tem como objetivo analisar os estudos que avaliaram os efeitos dos programas de treinamento aeróbio, força e combinado nos níveis de glicose sanguínea em indivíduos com diabetes do tipo 2. Foi utilizado o método de revisão sistemática, sendo utilizada a base de dados PubMed. As palavras chaves utilizadas para pesquisa foram training and diabetes. Foram identificados 484 artigos originais. Apenas 17 estudos respeitaram os critérios de inclusão. Os resultados evidenciam que os programas de treinamento aeróbio diminuíram os níveis de glicose. O programa de treinamento de força também foi favorável à diminuição dos níveis de glicose sanguínea. Já o programa de treinamento combinado não demonstrou efeitos favoráveis no controle da glicose sanguínea. Conclui-se que o programa de treinamento aeróbio e de força ajudam a controlar os níveis de glicose sanguínea em indivíduos com diabetes do tipo 2. Palavras-chave: diabetes mellitus, treinamento, glicose.ABSTRACTThe study aims to analyze the studies that evaluated the effects of aerobic, strength and combined programs training in blood glucose levels in people with type 2 diabetes. We used a systematic review method and is used to PubMed database. The key words used for searching were training and diabetes. We identified 484 original articles. Only 17 studies complied with the inclusion criteria. The results show that aerobic training programs decreased glucose levels. The strength training program was also favorable to decrease in blood glucose levels. But the combined training program has not shown favorable effects on blood glucose control. We conclude that the aerobic training and strength helps control blood glucose levels in individuals with type 2 diabetes. Keywords: diabetes mellitus, training, glucose.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Musri Musman ◽  
Mauli Zakia ◽  
Ratu Fazlia Inda Rahmayani ◽  
Erlidawati Erlidawati ◽  
Safrida Safrida

Abstract Background Ethnobotany knowledge in a community has shaped local wisdom in utilizing plants to treat diseases, such as the use of Malaka (Phyllanthus emblica) flesh to treat type 2 diabetes. This study presented evidence that the phenolic extract of the Malaka flesh could reduce blood sugar levels in the diabetic induced rats. Methods The phenolic extract of the P. emblica was administrated to the glucose-induced rats of the Wistar strain Rattus norvegicus for 14 days of treatment where the Metformin was used as a positive control. The data generated were analyzed by the two-way ANOVA Software related to the blood glucose level and by SAS Software related to the histopathological studies at a significant 95% confidence. Results The phenolic extract with concentrations of 100 and 200 mg/kg body weight could reduce blood glucose levels in diabetic rats. The post hoc Dunnet test showed that the administration of the extract to the rats with a concentration of 100 mg/kg body weight demonstrated a very significant decrease in blood glucose levels and repaired damaged cells better than administering the extract at a concentration of 200 mg/kg weight body. Conclusion The evidence indicated that the phenolic extract of the Malaka flesh can be utilized as anti type 2 Diabetes mellitus without damaging other organs.


Sign in / Sign up

Export Citation Format

Share Document