scholarly journals Formulation and evaluation of orodispersible Enalapril maleate tablets: a comparative study on natural super disintegrents and synthetic super disintegrents

2015 ◽  
Vol 1 (7) ◽  
pp. 313
Author(s):  
Kameswara Rao.S ◽  
Yusuf MD. ◽  
Saraswathi P. ◽  
Ch.R.Raghavendra Rao ◽  
Murali P. ◽  
...  

The aim of the present investigation is to formulate Enalapril maleate oral disintegrating tablet by using natural and synthetic superdisintegrents..ODTs may also be used to deliver drugs to the oral cavity, for local action or, in some cases, absorption across the oral mucosa, thereby avoiding first-pass hepatic metabolism and potentially increasing the rate and extent of uptake, and reducing undesirable metabolites. The objectives of the research work is to formulate oral disintegrating tablets of Enalapril maleate by using different super disintegrates(Natural, Synthetic) in different ratio by direct compression technique and tablets were evaluated for precompressional and postcompressional Parameters such as angle of repose, bulk density, tapped density, compressibility index, drug content and in-vitro drug release study, hardness, friability, wetting time and invitro dispersion time. To study the physical characteristics of the individual drug and optimized formulations by FTIR spectroscopy. To evaluate various characteristics of the resulting tablets. Formulation CCS3, IH2 were subjected to stability Studies as per ICHguidelines at temperatures and humidity of 255C/605%RH; and 405C/755%RH.Tablets didnt reveal any appreciable changes in respect to hardness, disintegration time, drug content and dissolution profile.

Author(s):  
Rosy Fatema ◽  
Sumaiya Khan ◽  
A. S. M. Roknuzzaman ◽  
Ramisa Anjum ◽  
Nishat Jahan

Loratadine, a second generation H1-receptor antagonist, works by blocking the action of histamine and is widely prescribed for itching, runny nose, watery eyes, and sneezing from "hay fever" and other allergic conditions. To ensure quality the main requirements for a medicinal product are safety, potency, efficacy and stability. This research work aimed to compare and assess the quality levels of different local brands of loratadine tablets available in the drug market of Bangladesh. Six different brands of loratadine 10 mg tablet manufactured by the local companies were used for the analysis. The evaluation was performed through the determination of weight variation, hardness, friability, percent potency, disintegration time, and dissolution profile in accordance with USP-NF specifications. All brands showed acceptable weight variation and % friability. The percent potency for tested samples by UV method ranges from 97.02%-108%, showing none of the brands contains less than 90% of the active principle as per the specification. The result of the physical and chemical studies, such as in-vitro dissolution, disintegration, hardness, etc., has been found to differ but lie within the specified limit. After analyzing the data obtained from the tests, it can be claimed that loratadine 10 mg tablets manufactured and marketed by several local companies in Bangladesh meet the quality standard required to achieve the desired therapeutic outcomes.


2020 ◽  
Vol 9 (3) ◽  
pp. 1239-1248

As per the granted biowaiver by the United States Food and Drug Administration, the in-vitro method is an alternative to find out bioequivalence. In the performed study, a finished product test was performed between the brand drug and the generic drugs to find out the consistency of generic drugs. In the recent era, generic medicine is encircled all over the market to reduce the cost of medicine so that the drug to be available to all the individual in minimum prices for that In-Vitro Bioequivalence is conducted for a different formulation of drugs for the assessment of different formulation of same drugs or alike active pharmaceutical ingredients. The main objective of this study is to find out the in-vitro bioequivalence, evaluate the parameters which impact on dissolution profile, and assemble the research work.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (09) ◽  
pp. 13-20
Author(s):  
V Arora ◽  
◽  
S Kumar ◽  
P. B Mishra ◽  
N. Vashisht

In present research work, taste masked Mouth Dissolving Tablets (MDTs) of Ranitidine Hydrochloride were designed with a view to enhance the patient compliance and provide a quick onset of action. Taste masking of the drug was done by formation of complex with β cyclodextrin. Tablets were prepared by direct compression, using superdisintegrants like crosscarmellose sodium and crosspovidone in different proportion and evaluated for the pre-compression parameters such as bulk density, compressibility, angle of repose etc. In view of the better taste palatability of such a bitter API, taste masking was carried out via making the cyclodextrin complex and sucralose was used as the sweetener to impart a palatable taste to the formulation. The prepared batches of tablets were evaluated for hardness, weight variation, friability, drug content, disintegration time and in vitro dissolution profile and found satisfactory. Among all, the formulation F7 containing 5% w/w proportion of both crosscarmellose sodium and crosspovidone was considered to be best formulation, which disintegrated completely in 19 seconds and released up to 98.38% of the drug.


2021 ◽  
Vol 17 ◽  
Author(s):  
Akula Ramesh ◽  
Jagadish P C ◽  
Vinay Jhawar ◽  
Proneel Das ◽  
Prajakta Patil ◽  
...  

Background: The bioavailability of a drug in a solid oral dose depends on its release from the drug product and its balance in dissolution. Compared with a reference drug, the newly developed formulation needs to establish bioequivalence by comparing the dissolution profile. Objective: To compare dissolution profiles of a newly developed maraviroc oral disintegration tablet and the reference Axentri® tablet. The current research was designed to establish and validate an integral analytical consistency by Quality by Design (QbD) approach to quantify maraviroc from dissolution samples using the RP-HPLC method. Methods: Maraviroc was formulated into an orally disintegrating tablet using a direct compression technique at different concentrations of sodium starch glycolate as super disintegrants and talc and magnesium stearate as glidants. The dissolution test in 0.1N HCl was performed according to standard procedures to predict bioequivalence. The results of dissolution tests were analyzed using the QbD Box Behnken Design multivariate RP-HPLC method. Results: The optimized formulation (F2) was selected as it showed 90% drug release in 5 min and a disintegration time of 22 sec with dissolution profiles to the marketed reference to meet the FDA requirements of f2 similarity factor statistics. The integrated analytical QbD method was statistically analyzed by ANOVA, counter-plot, and 3D response surface plots, which demonstrated that the model is statistically significant. The developed method was validated as per ICH guidelines Q2 (R1). Conclusion : In conclusion, maraviroc oral disintegrating tablets have been well prepared, and superior statement consistency is established by the implementation of the QbD analytical method for orally disintegrating tablet excellence and adoption.


1970 ◽  
Vol 2 (2) ◽  
pp. 59-65
Author(s):  
Abu Kalam Lutful Kabir ◽  
Shaikh Mukidur Rahman ◽  
Md Arshad Jahan ◽  
Abu Shara Shamsur Rouf

Difficulty in swallowing (dysphagia) is common among all age groups, especially in elderly and pediatrics. Mouth dissolving tablets constitute an innovative dosage forms that overcome the problems of swallowing and provides a quick onset of action. The purpose of this study was to formulate and evaluate mouth dissolving tablet of loratadine using a special preparation technology (pharmaburst Technology) with a super disintegrating agent (Croscarmellose sodium). Tablets were prepared by direct compression technique. The granules were evaluated for angle of repose, bulk density, tapped density, bulkiness, compressibility index and hausners ratio. The tablets were evaluated for hardness, thickness, uniformity of weight, friability, wetting time, water absorption ratio, disintegration time and drug content. In vitro release studies were performed using USP-II (paddle method) in 900ml of pH 1.2 at 50rpm. The physical properties of the prepared tablets did not show any significant variations and were found to have good physical integrity. Tablets prepared with pharmaburst B2 and Croscarmellose sodium showed a lesser disintegration time and wetting time of 27±0.10 and 38±0.13 seconds respectively. The best formulations were subjected to stability studies at 40ºC/75% RH for 60 days. Key words: Loratadine; pharmaburst B2; croscarmellose sodium; mouth dissolving tablets; direct compression.DOI: 10.3329/sjps.v2i2.5825Stamford Journal of Pharmaceutical Sciences Vol.2(2) 2009: 59-65


2018 ◽  
Vol 4 (1) ◽  
pp. 86-102 ◽  
Author(s):  
A. Acharya ◽  
G.B.K. Kumar ◽  
P. Goudanavar ◽  
K. Dhakal

Background: Recent developments in fast dissolving tablets have brought convenience in dosing to pediatric and elderly patients who have trouble in swallowing tablets.The main objective of the present study is to formulate fast dissolving tablet of Lornoxicam by direct compression method.Methods: Guar gum and crospovidone were used as natural and synthetic superdisintegrants respectively. Fast dissolving tablet of Lornoxicam were prepared by direct compression technique using three different approaches; superdisintegrant addition, sublimation, and solid dispersion.Results: IR and DSC studies showed no interaction between the drug and the excipients. All formulation showed disintegration time ranging from 16.09-42.54 second. Wetting time and disintegration time decreased by increasing the super disintegrant concentration from 2.5% to 5% w/w. Formulae L16 gave the best in- vitro disintegration and dissolution results, which would be due to swelling effect of Gaur gum and amorphization of the drug during the solid dispersion preparation.The best formulation L16 was subjected to stability testing for 3 month and results showed no significant change in appearance, hardness, drug content and dissolution profile of the tablets, hence tablet is stable throughout its stability studies.Conclusion: It was concluded that fast dissolving tablets of Lornoxicam were formulated successfully with desired characteristics which disintegrated rapidly; provided rapid onset of action; and enhanced the patient convenience and compliance.JMMIHS,2018;4(1):86-102


2019 ◽  
Vol 11 (1) ◽  
pp. 150
Author(s):  
Sreenivas Patro Sisinthy ◽  
Shubbaneswarei Selladurai

Objective: The objective of this research was to formulate cinnarizine tablets using the liquid-solid compact technique to enhance its solubility and dissolution rate.Methods: Cinnarizine liquid-solid compacts were formulated using propylene glycol as the non-volatile solvent, Neusilin US2 as the carrier material, Aerosil 200 as the coating material and croscarmellose sodium as the disintegrant. The interaction between drug and excipients were characterized by Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) studies. Different batches of liquid, solid compacts were prepared by using varying carrier-coating excipient ratio and different concentration of liquid medication. Flow parameters such as bulk density, tapped density, Carr’s Index, Hausner’s Ratio as well as an angle of repose were used to test the flowability of the powder blend. The liquid-solid compacts were produced by direct compression method and were evaluated for tests such as weight variation, drug content, hardness, thickness, friability, wetting time, disintegration time as well as the in vitro dissolution studies.Results: The results of the preformulation studies of liquisolid compacts showed acceptable flow properties. The results of FTIR and DSC studies showed that there is no drug-excipient interactions. The different R values and concentrations were found to have a marked effect on the dissolution profile. Formulations with higher carrier: coating ratio (R-value) and lower drug concentrations displayed a better dissolution profile. The percentage of drug release of F3 with an R-value of 20 and a drug concentration of 10% was found to be 88.11% when compared to the conventional marketed tablet which released only 44.07% at the end of 2 h.Conclusion: From this research, it is inferred that liquid-solid technique is a promising and effective approach that can be used to enhance the dissolution rate of cinnarizine.


2019 ◽  
Vol 9 (1) ◽  
pp. 95-102
Author(s):  
Afroza Akbar Patel ◽  
Siraj N Shaikh ◽  
Huzaifa Patel ◽  
Afzal Band ◽  
Ahmed Shaoor

The aim of this research work was to design develop & evaluate oral fast disintegrating tablets of Ranitidine HCL. The Orodispersible tablets of Ranitidine HCl were prepared by using direct Compression technique with a Synthetic Superdisintegrant such as Crosspovidone and a natural Superdisintegrant Fenugreek gum in different concentration. 32 factorial designs was applied to study the effect of independent variables,  concentration of Crosspovidone & Fenugreek gum on dependent variables like Cumulative % Drug release and Disintegration time by using design expert software. Prepared oral fast disintegrating tablets evaluated for Pre and Post-compression parameters. The prepared tablets exhibited satisfactory physico-chemical characterise especially fast disintegration & dissolution property. Full factorial design and optimization technique successfully used in the development oral fast disintegrating tablets. Comparing the all the formulations, formulation F9 was considered as optimized formulation which shows excellent fast disintegration, in vitro dissolution, and faster drug release within 6 min in comparison to other batches also stable in stability study. Keywords:  Fast disintegrating, Ranitidine, Crosspovidone, Gum, Optimizations, Water absorption ratio


Author(s):  
Sinodukoo Eziuzo Okafo ◽  
Avbunudiogba John Afokoghene ◽  
Christian Areruruoghene Alalor ◽  
Deborah Ufuoma Igbinake

Aims: This research was done to study the effects of types and concentrations of lubricants on the dissolution and disintegration profile of metronidazole tablets formulated using Sida acuta gum as a binder. Methodology: Sida acuta gum (SAG) was extracted from powdered dried leaves of Sida acuta. Metronidazole granules were produced by wet granulation technique using different concentrations (1 and 2%) of SAG as a binder and mixed with different concentrations (0.5, 1.0, and 1.5%) of magnesium stearate (MS) or sodium lauryl sulphate (SLS) as a lubricant. The granules/lubricant -mix was compressed into tablets and evaluated for hardness, weight uniformity, drug content, disintegration time, friability and in vitro drug release. Results: The hardness for the tablets was from 4.08 to 7.97 Kgf. The friability was from 0.02±0.45 to 3.40±0.43%. Tablets from formulations A1-A3, B2, and B3 failed the friability test. Formulations prepared with 1% SAG were more friable than those formulated with 2% SAG. Disintegration time for formulations A1-A3 (1% SAG + MS) ranged from 19.07 to 63.5 min, while that of A4-A6 (2% SAG + MS) was from 39.06 to 81.48 min. Formulations B1-B3 (1% SAG + SLS) had disintegration time that ranged from 4.22 to 6.8 min while that of B4-B6 (2% SAG + SLS) was from 9.35 to 15.90 min. The % drug release at 60 min for formulations that contained SAG and MS was 76.60-104.28% and SAG and SLS was 99.89-101.35% Conclusion: Metronidazole tablets formulated using SLS as lubricant disintegrated faster than those formulated using magnesium stearate as lubricant. Percentage drug release from tablets containing SLS was slightly higher than those that contained magnesium stearate. Higher concentrations of the lubricants produced softer tablets.


2018 ◽  
Vol 6 (5) ◽  
pp. 32-40
Author(s):  
J S Dua ◽  
Beerpal Kaur ◽  
D N Prasad

 Fenofibrate is a drug included in BCS class II category, generally used to reduce cholesterol level in patient having a risk of cardiovascular disease. The main aim of this research was to ameliorate solubility and dissolution profile of Fenofibrate with comparison between two different methods i.e. Solid dispersion and liquisolid technique. In liquisolid system, a dry freely flowing and compressible powder mixture was obtained which absorb drug solution or suspension in non-volatile solvent. While in case of solid dispersion drug was dispersed with suitable hydrophillic carrier with or without volatile solvent to get powder material. Two formulation of Fenofibrate solid dispersion were prepared by solvent evaporation method using β-CD as a hydrophillic carrier with ratios 1:1 and 1:3. In case of liquisolid technique, two liquisolid compacts were prepared with ‘R’ value 20:1 and 40:1 using Avicel PH 102 as a carrier and Aerosil 200 as a coating material. All the formulations were characterized by FTIR, DSC and solubility studies. Precompression studies of all the batches were done by determining angle of repose (25.100- 35.020), bulk density (0.51- 0.56 g/ml), tapped density (0.60-0.66 g/ml), carr’s index (15.61-19.03%) and hausner’s ratio (1.13-1.25). Post compression evaluation was done by checking hardness (4-5 kg/cm2), thickness (3.56-4.01mm), friability (0.54-0.75%), disintegration time (3.50-5.56min), drug content (80.34-95.05%) and in-vitro drug release (81.55-92.93%). Out of all the four batches SD2 batch that was prepared by solid technology showed an excellent result by releasing drug at  96.91 %. Key words-  Fenofibrate, Solid dispersion, Liquisolid compact, Avicel PH 102, Aerosil 200.


Sign in / Sign up

Export Citation Format

Share Document