scholarly journals Current research opportunities of image processing and computer vision

2019 ◽  
Vol 20 (4) ◽  
Author(s):  
Abhishek Gupta

Image processing and computer vision is an important and essential area in today’s scenario. Several problems can be solved through computer vision techniques. There are a large number of challenges and opportunities which require skills in the field of computer vision to address them. Computer vision applications cover each band of the electromagnetic spectrum and there are numerous applications in every band. This article is targeted to the research students, scholars and researchers who are interested to solve the problems in the field of image processing and computer vision. It addresses the opportunities and current trends of computer vision applications in all emerging domains. The research needs are identified through available literature survey and classified in the corresponding domains. The possible exemplary images are collected from the different repositories available for research and shown in this paper. The opportunities mentioned in this paper are explained through the images so that a naive researcher can understand it well before proceeding to solve the corresponding problems. The databases mentioned in this article could be useful for researchers who are interested in further solving the problem. The motivation of the article is to expose the current opportunities in the field of image processing and computer vision along with corresponding repositories. Interested researchers who are working in the field can choose a problem through this article and can get the experimental images through the cited references for working further. 

2008 ◽  
Vol 15 (1) ◽  
pp. 83-110 ◽  
Author(s):  
Anderson Rocha ◽  
Siome Goldenstein

In this tutorial, we introduce the basic theory behind Steganography and Steganalysis, and present some recent algorithms and developments of these fields. We show how the existing techniques used nowadays are related to Image Processing and Computer Vision, point out several trendy applications of Steganography and Steganalysis, and list a few great research opportunities just waiting to be addressed.


2021 ◽  
Vol 1973 (1) ◽  
pp. 012002
Author(s):  
Reem M. Hussien ◽  
Karrar Q. Al-Jubouri ◽  
Mohaimen Al Gburi ◽  
Al Gburi Hussein Qahtan ◽  
Al Hamami Duaa Jaafar

Author(s):  
Osman Hürol Türkakın

Computer vision methods are wide-spread techniques mostly used for detecting cracks on structural components, extracting information from traffic flows, and analyzing safety in construction processes. In recent years, with increasing usage of machine learning techniques, computer vision applications are supported by machine learning approaches. So, several studies were conducted using machine learning techniques to apply image processing. As a result, this chapter offers a scientometric analysis for investigating current literature of image processing studies for civil engineering field in order to track the scientometric relationship between machine learning and image processing techniques.


2013 ◽  
Vol 52 (14) ◽  
pp. 3394 ◽  
Author(s):  
Dmitry Savransky ◽  
Sandrine J. Thomas ◽  
Lisa A. Poyneer ◽  
Bruce A. Macintosh

2020 ◽  
Vol 10 (9) ◽  
pp. 3150
Author(s):  
Dong Zhang ◽  
Gang Xie ◽  
Jinchang Ren ◽  
Zhe Zhang ◽  
Wenliang Bao ◽  
...  

Superpixel segmentation has become a crucial tool in many image processing and computer vision applications. In this paper, a novel content-sensitive superpixel generation algorithm with boundary adjustment is proposed. First, the image local entropy was used to measure the amount of information in the image, and the amount of information was evenly distributed to each seed. It placed more seeds to achieve the lower under-segmentation in content-dense regions, and placed the fewer seeds to increase computational efficiency in content-sparse regions. Second, the Prim algorithm was adopted to generate uniform superpixels efficiently. Third, a boundary adjustment strategy with the adaptive distance further optimized the superpixels to improve the performance of the superpixel. Experimental results on the Berkeley Segmentation Database show that our method outperforms competing methods under evaluation metrics.


2018 ◽  
Vol 1 (2) ◽  
pp. 17-23
Author(s):  
Takialddin Al Smadi

This survey outlines the use of computer vision in Image and video processing in multidisciplinary applications; either in academia or industry, which are active in this field.The scope of this paper covers the theoretical and practical aspects in image and video processing in addition of computer vision, from essential research to evolution of application.In this paper a various subjects of image processing and computer vision will be demonstrated ,these subjects are spanned from the evolution of mobile augmented reality (MAR) applications, to augmented reality under 3D modeling and real time depth imaging, video processing algorithms will be discussed to get higher depth video compression, beside that in the field of mobile platform an automatic computer vision system for citrus fruit has been implemented ,where the Bayesian classification with Boundary Growing to detect the text in the video scene. Also the paper illustrates the usability of the handed interactive method to the portable projector based on augmented reality.   © 2018 JASET, International Scholars and Researchers Association


Sign in / Sign up

Export Citation Format

Share Document