scholarly journals Identifying undrained layers from mature gas reservoirs using reservoir simulation and high resolution geophysical investigations

2019 ◽  
Vol 36 (1) ◽  
pp. 125
Author(s):  
Argentina Tătaru ◽  
Ana Maria Simescu ◽  
Sándor Bolázs
2021 ◽  
Vol 18 (1) ◽  
pp. 145-162
Author(s):  
B Butchibabu ◽  
Prosanta Kumar Khan ◽  
P C Jha

Abstract This study aims for the protection of a crude-oil pipeline, buried at a shallow depth, against a probable environmental hazard and pilferage. Both surface and borehole geophysical techniques such as electrical resistivity tomography (ERT), ground penetrating radar (GPR), surface seismic refraction tomography (SRT), cross-hole seismic tomography (CST) and cross-hole seismic profiling (CSP) were used to map the vulnerable zones. Data were acquired using ERT, GPR and SRT along the pipeline for a length of 750 m, and across the pipeline for a length of 4096 m (over 16 profiles of ERT and SRT with a separation of 50 m) for high-resolution imaging of the near-surface features. Borehole techniques, based on six CSP and three CST, were carried out at potentially vulnerable locations up to a depth of 30 m to complement the surface mapping with high-resolution imaging of deeper features. The ERT results revealed the presence of voids or cavities below the pipeline. A major weak zone was identified at the central part of the study area extending significantly deep into the subsurface. CSP and CST results also confirmed the presence of weak zones below the pipeline. The integrated geophysical investigations helped to detect the old workings and a deformation zone in the overburden. These features near the pipeline produced instability leading to deformation in the overburden, and led to subsidence in close vicinity of the concerned area. The area for imminent subsidence, proposed based on the results of the present comprehensive geophysical investigations, was found critical for the pipeline.


2002 ◽  
Vol 42 (1) ◽  
pp. 65 ◽  
Author(s):  
P.C. Strong ◽  
G.R. Wood ◽  
S.C. Lang ◽  
A. Jollands ◽  
E. Karalaus ◽  
...  

Fluvial-lacustrine reservoirs in coal-bearing strata provide a particular challenge for reservoir characterisation because of the dominance of coal on the seismic signature and the highly variable reservoir geometry, quality and stratigraphic connectivity. Geological models for the fluvial gas reservoirs in the Permian Patchawarra Formation of the Cooper Basin are critical to minimise the perceived reservoir risks of these relatively deep targets. This can be achieved by applying high-resolution sequence stratigraphic concepts and finescaled seismic mapping. The workflow begins with building a robust regional chronostratigraphic framework, focussing on widespread lacustrine flooding surfaces and unconformities, tied to seismic scale reflectors. This framework is refined by identification of local surfaces that divide the Patchawarra Formation into high-resolution genetic units. A log facies scheme is established based on wireline log character, and calibrated to cores and cuttings, supported by analogue studies, such as the modern Ob River system in Western Siberia. Stacking patterns within each genetic unit are used to determine depositional systems tracts, which can have important reservoir connectivity implications. This leads to the generation of log signature maps for each interval, from which palaeogeographic reconstructions are generated. These maps are drawn with the guiding control of syn-depositional structural features and net/ gross trends. Estimates of fluvial channel belt widths are based on modern and ancient analogues. The resultant palaeogeography maps are used with structural and production data to refine play concepts, as a predictive tool to locate exploration and development drilling opportunities, to assess volumetrics, and to improve drainage efficiency and recovery during production of hydrocarbons.


2013 ◽  
Vol 53 (1) ◽  
pp. 363
Author(s):  
Yangfan Lu ◽  
Hassan Bahrami ◽  
Mofazzal Hossain ◽  
Ahmad Jamili ◽  
Arshad Ahmed ◽  
...  

Tight-gas reservoirs have low permeability and significant damage. When drilling the tight formations, wellbore liquid invades the formation and increases water saturation of the near wellbore area and significantly deceases permeability of this area. Because of the invasion, the permeability of the invasion zone near the wellbore in tight-gas formations significantly decreases. This damage is mainly controlled by wettability and capillary pressure (Pc). One of the methods to improve productivity of tight-gas reservoirs is to reduce IFT between formation gas and invaded water to remove phase trapping. The invasion of wellbore liquid into tight formations can damage permeability controlled by Pc and relative permeability curves. In the case of drilling by using a water-based mud, tight formations are sensitive to the invasion damage due to the high-critical water saturation and capillary pressures. Reducing the Pc is an effective way to increase the well productivity. Using the IFT reducers, Pc effect is reduced and trapped phase can be recovered; therefore, productivity of the TGS reservoirs can be increased significantly. This study focuses on reducing phase-trapping damage in tight reservoirs by using reservoir simulation to examine the methods, such use of IFT reducers in water-based-drilled tight formations that can reduce Pc effect. The Pc and relative permeability curves are corrected based on the reduced IFT; they are then input to the reservoir simulation model to quantitatively understand how IFT reducers can help improve productivity of tight reservoirs.


2002 ◽  
Vol 5 (01) ◽  
pp. 11-23 ◽  
Author(s):  
A.H. Dogru ◽  
H.A. Sunaidi ◽  
L.S. Fung ◽  
W.A. Habiballah ◽  
N. Al-Zamel ◽  
...  

Summary A new parallel, black-oil-production reservoir simulator (Powers**) has been developed and fully integrated into the pre- and post-processing graphical environment. Its primary use is to simulate the giant oil and gas reservoirs of the Middle East using millions of cells. The new simulator has been created for parallelism and scalability, with the aim of making megacell simulation a day-to-day reservoir-management tool. Upon its completion, the parallel simulator was validated against published benchmark problems and other industrial simulators. Several giant oil-reservoir studies have been conducted with million-cell descriptions. This paper presents the model formulation, parallel linear solver, parallel locally refined grids, and parallel well management. The benefits of using megacell simulation models are illustrated by a real field example used to confirm bypassed oil zones and obtain a history match in a short time period. With the new technology, preprocessing, construction, running, and post-processing of megacell models is finally practical. A typical history- match run for a field with 30 to 50 years of production takes only a few hours. Introduction With the development of early parallel computers, the attractive speed of these computers got the attention of oil industry researchers. Initial questions were concentrated along these lines:Can one develop a truly parallel reservoir-simulator code?What type of hardware and programming languages should be chosen? Contrary to seismic, it is well known that reservoir simulator algorithms are not naturally parallel; they are more recursive, and variables display a strong dependency on each other (strong coupling and nonlinearity). This poses a big challenge for the parallelization. On the other hand, if one could develop a parallel code, the speed of computations would increase by at least an order of magnitude; as a result, many large problems could be handled. This capability would also aid our understanding of the fluid flow in a complex reservoir. Additionally, the proper handling of the reservoir heterogeneities should result in more realistic predictions. The other benefit of megacell description is the minimization of upscaling effects and numerical dispersion. The megacell simulation has a natural application in simulating the world's giant oil and gas reservoirs. For example, a grid size of 50 m or less is used widely for the small and medium-size reservoirs in the world. In contrast, many giant reservoirs in the Middle East use a gridblock size of 250 m or larger; this easily yields a model with more than 1 million cells. Therefore, it is of specific interest to have megacell description and still be able to run fast. Such capability is important for the day-to-day reservoir management of these fields. This paper is organized as follows: the relevant work in the petroleum-reservoir-simulation literature has been reviewed. This will be followed by the description of the new parallel simulator and the presentation of the numerical solution and parallelism strategies. (The details of the data structures, well handling, and parallel input/output operations are placed in the appendices). The main text also contains a brief description of the parallel linear solver, locally refined grids, and well management. A brief description of megacell pre- and post-processing is presented. Next, we address performance and parallel scalability; this is a key section that demonstrates the degree of parallelization of the simulator. The last section presents four real field simulation examples. These example cases cover all stages of the simulator and provide actual central processing unit (CPU) execution time for each case. As a byproduct, the benefits of megacell simulation are demonstrated by two examples: locating bypassed oil zones, and obtaining a quicker history match. Details of each section can be found in the appendices. Previous Work In the 1980s, research on parallel-reservoir simulation had been intensified by the further development of shared-memory and distributed- memory machines. In 1987, Scott et al.1 presented a Multiple Instruction Multiple Data (MIMD) approach to reservoir simulation. Chien2 investigated parallel processing on sharedmemory computers. In early 1990, Li3 presented a parallelized version of a commercial simulator on a shared-memory Cray computer. For the distributed-memory machines, Wheeler4 developed a black-oil simulator on a hypercube in 1989. In the early 1990s, Killough and Bhogeswara5 presented a compositional simulator on an Intel iPSC/860, and Rutledge et al.6 developed an Implicit Pressure Explicit Saturation (IMPES) black-oil reservoir simulator for the CM-2 machine. They showed that reservoir models over 2 million cells could be run on this type of machine with 65,536 processors. This paper stated that computational speeds in the order of 1 gigaflop in the matrix construction and solution were achievable. In mid-1995, more investigators published reservoir-simulation papers that focused on distributed-memory machines. Kaarstad7 presented a 2D oil/water research simulator running on a 16384 processor MasPar MP-2 machine. He showed that a model problem using 1 million gridpoints could be solved in a few minutes of computer time. Rame and Delshad8 parallelized a chemical flooding code (UTCHEM) and tested it on a variety of systems for scalability. This paper also included test results on Intel iPSC/960, CM-5, Kendall Square, and Cray T3D.


Sign in / Sign up

Export Citation Format

Share Document