scholarly journals A Python Library for the Jupyteo IDE Earth Observation Processing Tool Enabling Interoperability with the QGIS System for Use in Data Science

2021 ◽  
Vol 16 (1) ◽  
pp. 117-144
Author(s):  
Michał Bednarczyk

This paper describes JupyQgis – a new Python library for Jupyteo IDE enabling interoperability with the QGIS system. Jupyteo is an online integrated development environment for earth observation data processing and is available on a cloud platform. It is targeted at remote sensing experts, scientists and users who can develop the Jupyter notebook by reusing embedded open-source tools, WPS interfaces and existing notebooks. In recent years, there has been an increasing popularity of data science methods that have become the focus of many organizations. Many scientific disciplines are facing a significant transformation due to data-driven solutions. This is especially true of geodesy, environmental sciences, and Earth sciences, where large data sets, such as Earth observation satellite data (EO data) and GIS data are used. The previous experience in using Jupyteo, both among the users of this platform and its creators, indicates the need to supplement its functionality with GIS analytical tools. This study analyzed the most efficient way to combine the functionality of the QGIS system with the functionality of the Jupyteo platform in one tool. It was found that the most suitable solution is to create a custom library providing an API for collaboration between both environments. The resulting library makes the work much easier and simplifies the source code of the created Python scripts. The functionality of the developed solution was illustrated with a test use case.

2019 ◽  
Vol 11 (17) ◽  
pp. 1973 ◽  
Author(s):  
Rapiński ◽  
Bednarczyk ◽  
Zinkiewicz

The paper describes a new tool called JupyTEP integrated development environment (IDE), which is an online integrated development environment for earth observation data processing available in the cloud. This work is a result of the project entitled “JupyTEP IDE—Jupyter-based IDE as an interactive and collaborative environment for the development of notebook style EO algorithms on network of exploitation platforms infrastructure” carried out in cooperation with European Space Agency. The main goal of this project was to provide a universal earth observation data processing tool to the community. JupyTEP IDE is an extension of Jupyter software ecosystem with customization of existing components for the needs of earth observation scientists and other professional and non-professional users. The approach is based on configuration, customization, adaptation, and extension of Jupyter, Jupyter Hub, and Docker components on earth observation data cloud infrastructure in the most flexible way; integration with accessible libraries and earth observation data tools (sentinel application platform (SNAP), geospatial data abstraction library (GDAL), etc.); adaptation of existing web processing service (WPS)-oriented earth observation services. The user-oriented product is based on a web-related user interface in the form of extended and modified Jupyter user interface (frontend) with customized layout, earth observation data processing extension, and a set of predefined notebooks, widgets, and tools. The final IDE is addressed to the remote sensing experts and other users who intend to develop Jupyter notebooks with the reuse of embedded tools, common WPS interfaces, and existing notebooks. The paper describes the background of the system, its architecture, and possible use cases.


2019 ◽  
Vol 11 (8) ◽  
pp. 907 ◽  
Author(s):  
Vasileios Syrris ◽  
Paul Hasenohr ◽  
Blagoj Delipetrev ◽  
Alexander Kotsev ◽  
Pieter Kempeneers ◽  
...  

Motivated by the increasing availability of open and free Earth observation data through the Copernicus Sentinel missions, this study investigates the capacity of advanced computational models to automatically generate thematic layers, which in turn contribute to and facilitate the creation of land cover products. In concrete terms, we assess the practical and computational aspects of multi-class Sentinel-2 image segmentation based on a convolutional neural network and random forest approaches. The annotated learning set derives from data that is made available as result of the implementation of European Union’s INSPIRE Directive. Since this network of data sets remains incomplete in regard to some geographic areas, another objective of this work was to provide consistent and reproducible ways for machine-driven mapping of these gaps and a potential update of the existing ones. Finally, the performance analysis identifies the most important hyper-parameters, and provides hints on the models’ deployment and their transferability.


2017 ◽  
Vol 33 (11) ◽  
pp. 1202-1222 ◽  
Author(s):  
Sudhir Kumar Singh ◽  
Prosper Basommi Laari ◽  
Sk. Mustak ◽  
Prashant K. Srivastava ◽  
Szilárd Szabó

2016 ◽  
pp. 1-15 ◽  
Author(s):  
Sudhir Kumar Singh ◽  
Prashant K. Srivastava ◽  
Szilárd Szabó ◽  
George P. Petropoulos ◽  
Manika Gupta ◽  
...  

2021 ◽  
Author(s):  
Sophia Walther ◽  
Simon Besnard ◽  
Jacob A. Nelson ◽  
Tarek S. El-Madany ◽  
Mirco Migliavacca ◽  
...  

Abstract. The eddy-covariance technique measures carbon, water, and energy fluxes between the land surface and the atmosphere at several hundreds of sites globally. Collections of standardised and homogenised flux estimates such as the LaThuile, Fluxnet2015, National Ecological Observatory Network (NEON), Integrated Carbon Observation System (ICOS), AsiaFlux, and Terrestrial Ecosystem Research Network (TERN) / OzFlux data sets are invaluable to study land surface processes and vegetation functioning at the ecosystem scale. Space-borne measurements give complementary information on the state of the land surface in the surroundings of the towers. They aid the interpretation of the fluxes and support the training and validation of ecosystem models. However, insufficient quality, frequent and/or long gaps are recurrent problems in applying the remotely sensed data and may considerably affect the scientific conclusions drawn from them. Here, we describe a standardised procedure to extract, quality filter, and gap-fill Earth observation data from the MODIS instruments and the Landsat satellites. The methods consistently process surface reflectance in individual spectral bands, derived vegetation indices and land surface temperature. A geometrical correction estimates the magnitude of land surface temperature as if seen from nadir or 40° off-nadir. We offer to the community pre-processed Earth observation data in a radius of 2 km around 338 flux sites based on the MCD43A4/A2, MxD11A1 MODIS products and Landsat collection~1 Tier1 and Tier2 products. The data sets we provide can widely facilitate the integration of activities in the fields of eddy-covariance, remote sensing and modelling.


Sign in / Sign up

Export Citation Format

Share Document