scholarly journals MICROSTRUCTURES OF THE MICRO-CRYSTALLINE SILICON THIN FILMS PREPARED BY HOT WIRE CHEMICAL DEPOSITION WITH HYDROGEN DILUTION

1998 ◽  
Vol 47 (9) ◽  
pp. 1542
Author(s):  
GUO XIAO-XU ◽  
ZHU MEI-FANG ◽  
LIU JIN-LONG ◽  
HAN YI-QIN ◽  
XU HUAI-ZHE ◽  
...  
2009 ◽  
Vol 58 (1) ◽  
pp. 565
Author(s):  
Qiu Sheng-Hua ◽  
Chen Cheng-Zhao ◽  
Liu Cui-Qing ◽  
Wu Yuan-Dan ◽  
Li Ping ◽  
...  

1999 ◽  
Vol 557 ◽  
Author(s):  
M. Ichikawa ◽  
J. Takeshita ◽  
A. Yamada ◽  
M. Konagai

AbstractA new process, the Hot Wire Cell method, was developed and successfully used to grow polycrystalline silicon thin films at a low temperature and high growth rate. In the Hot Wire Cell method, reactant gases are decomposed as a result of reacting with a heated tungsten filament placed near to a substrate and polycrystalline silicon films can be deposited at a growth rate of 1.2nm/s without hydrogen dilution and 0.9nm/s with the use hydrogen dilution. The film crystallinity changed from amorphous to polycrystalline due to the addition of hydrogen, thus hydrogen dilution was effective for improving film crystallinity. Furthermore, we obtained (220) oriented polycrystalline silicon thin films with a 90% crystal fraction by the use of hydrogen dilution. These results showed that the Hot Wire Cell method is promising for the deposition of device-grade polycrystalline silicon films for photovoltaic applications.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 317-323 ◽  
Author(s):  
Constantinos Christofides ◽  
Andreas Mandelis ◽  
Albert Engel ◽  
Michel Bisson ◽  
Gord Harling

A photopyroelectric spectrometer with real-time and(or) self-normalization capability was used for both conventional transmission and thermal-wave spectroscopic measurements of amorphous Si thin films, deposited on crystalline Si substrates. Optical-absorption-coefficient spectra were obtained from these measurements and the superior dynamic range of the out-of-phase (quadrature) photopyroelectric signal was established as the preferred measurement method, owing to its zero-background compensation capability. An extension of a photopyroelectric theoretical model was established and successfully tested in the determination of the optical absorption coefficient and the thermal diffusivity of the sample under investigation. Instrumental sensitivity limits of βt ≈ 5 × 10−3 were demonstrated.


2014 ◽  
Vol 105 (2) ◽  
pp. 022108 ◽  
Author(s):  
S. Steffens ◽  
C. Becker ◽  
D. Amkreutz ◽  
A. Klossek ◽  
M. Kittler ◽  
...  

1999 ◽  
Vol 557 ◽  
Author(s):  
Guozhen Yue ◽  
Jing Lin ◽  
Qi Wang ◽  
Daxing Han

AbstractFilms prepared by hot wire CVD using H dilution ratio, R=H 2/SiH4, from 1 to 20 were studied by X-ray, Raman, PL, and conductivity measurements. We found that (a) when the dilution ratio reached R=3, the structure transition from amorphous to microcrystalline growth occured; meanwhile, PL spectrum showed a dual-peak at 1.3 and 1.0 eV; (b) the total intensity, band width, and peak position of the low energy PL band decreased with increasing H dilution; (c) both the Raman and PL measured from the transparent substrate side showed that initial growth tends to be amorphous and a portion of μc-Si was formed when R ≥ 5; and (d) the conductivity activation energy first decreased from 0.68 to 0.15 eV when the film transition from a- to μc-Si; then increased slightly with increasing μc-Si fraction. The results demonstrate that the variation of the H-dilution ratio has significant effects on both the film structures and the optoelectric properties.


Sign in / Sign up

Export Citation Format

Share Document