Features of Particulate Matter and Microbiota in the Lowest Atmospheric Layer above Densely Populated Urban Areas

2021 ◽  
Author(s):  
Mihail Iliev ◽  
Ralitsa Ilieva ◽  
Boyanka Angelova ◽  
Daniela Paneva ◽  
Zara Cherkezova-Zheleva ◽  
...  
2020 ◽  
Vol 4 (1) ◽  
pp. 9
Author(s):  
Martina Habulan ◽  
Bojan Đurin ◽  
Anita Ptiček Siročić ◽  
Nikola Sakač

Particulate matter (PM) comprises a mixture of chemical compounds and water particles found in the air. The size of suspended particles is directly related to the negative impact on human health and the environment. In this paper, we present an analysis of the PM pollution in urban areas of Croatia. Data on PM10 and PM2.5 concentrations were measured with nine instruments at seven stationary measuring units located in three continental cities, namely Zagreb (the capital), Slavonski Brod, and Osijek, and two cities on the Adriatic coast, namely Rijeka and Dubrovnik. We analyzed an hourly course of PM2.5 and PM10 concentrations and average seasonal PM2.5 and PM10 concentrations from 2017 to 2019. At most measuring stations, maximum concentrations were recorded during autumn and winter, which can be explained by the intensive use of fossil fuels and traffic. Increases in PM concentrations during the summer months at measuring stations in Rijeka and Dubrovnik may be associated with the intensive arrival of tourists by air during the tourist season, and lower PM concentrations during the winter periods may be caused by a milder climate consequently resulting in lower consumption of fossil fuels and use of electric energy for heating.


2022 ◽  
Vol 14 (1) ◽  
pp. 558
Author(s):  
Ingrid Priscylla Silva Araújo ◽  
Dayana Bastos Costa

Studies on particulate matter (PM) from construction activities are still at an early stage. Thus, there is still no consensus on standardized experimental methods for monitoring PM in construction sites, which impedes the advancement of knowledge on this subject. This work proposes guidelines for measuring and monitoring the concentration of suspended PM and the annoyance generated by sedimented particles on construction sites in urban areas. These guidelines aim to reduce the variability and uncertainties that exist during the PM sampling processes at construction sites. This study adopts a literature review strategy in order to update the available scientific literature based on empirical evidence obtained in experimental PM studies and relevant documents from government agencies. The proposed guidelines were applied in a study protocol for gravimetric monitoring PM and annoyance tracking generated by sedimented particles using sticky pads. As a result, this article details sampling techniques, procedures, and instruments, focusing on gravimetric sampling, highlighting their characteristics compared to other monitoring approaches. Additionally, it points out a series of parameters for the measurement and monitoring of PM. This paper seeks to support future researchers in this area, inform decision making for experimental sampling, and provide a benchmark for measuring and monitoring PM at construction sites.


2020 ◽  
Vol 231 (10) ◽  
Author(s):  
Neele van Laaten ◽  
Dirk Merten ◽  
Wolf von Tümpling ◽  
Thorsten Schäfer ◽  
Michael Pirrung

Abstract Atmospheric particulate matter has become a major issue in urban areas from both a health and an environmental perspective. In this context, biomonitoring methods are a potential complement to classical monitoring methods like impactor samplers, being spatially limited due to higher costs. Monitoring using spider webs is compared with the more common moss bag technique in this study, focusing on mass fractions and ratios of elements and the applicability for source identification. Spider webs and moss bags with Hypnum cupressiforme were sampled at the same 15 locations with different types of traffic in the city of Jena, Germany. In the samples, mass fractions of 35 elements, mainly trace metals, were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) after aqua regia digestion. Significantly higher mass fractions in spider webs than in moss bags were found, even after a much shorter exposure period, and could not be ascribed completely to a diluting effect by the biological material in the samples. Different mechanisms of particle retention by the two materials are therefore assumed. More significant correlations between elements have been found for the spider web dataset. Those patterns allow for an identification of different sources of particulate matter (e.g. geogenic dust, brake wear), while correlations between elements in the moss bags show a rather general anthropogenic influence. Therefore, it is recommended to use spider webs for the short-term detection of local sources while moss bag biomonitoring is a good tool to show a broader, long-term anthropogenic influence.


Sign in / Sign up

Export Citation Format

Share Document