Yang-Mills Equations of General Connections and a Certain Solutions in the Quaternionic Hopf Fibration Over Four-Sphere

2021 ◽  
Vol 22 ◽  
pp. 121-135
Author(s):  
Kensaku Kitada

We investigate a version of Yang-Mills theory by means of general connections. In order to deduce a basic equation, which we regard as a version of Yang-Mills equation, we construct a self-action density using the curvature of general connections. The most different point from the usual theory is that the solutions are given in pairs of two general connections. This enables us to get nontrivial solutions as general connections. Especially, in the quaternionic Hopf fibration over four-sphere, we demonstrate that there certainly exist nontrivial solutions, which are made by twisting the well-known BPST anti-instanton.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Masashi Hamanaka ◽  
Shan-Chi Huang

Abstract We study exact soliton solutions of anti-self-dual Yang-Mills equations for G = GL(2) in four-dimensional spaces with the Euclidean, Minkowski and Ultrahyperbolic signatures and construct special kinds of one-soliton solutions whose action density TrFμνFμν can be real-valued. These solitons are shown to be new type of domain walls in four dimension by explicit calculation of the real-valued action density. Our results are successful applications of the Darboux transformation developed by Nimmo, Gilson and Ohta. More surprisingly, integration of these action densities over the four-dimensional spaces are suggested to be not infinity but zero. Furthermore, whether gauge group G = U(2) can be realized on our solition solutions or not is also discussed on each real space.


1989 ◽  
Vol 40 (12) ◽  
pp. 4142-4150 ◽  
Author(s):  
M. P. Isidro Filho ◽  
A. K. Kerman ◽  
Howard D. Trottier

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Masashi Hamanaka ◽  
Shan-Chi Huang

Abstract We study dynamics of multi-soliton solutions of anti-self-dual Yang-Mills equations for G = GL(2, ℂ) in four-dimensional spaces. The one-soliton solution can be interpreted as a codimension-one soliton in four-dimensional spaces because the principal peak of action density localizes on a three-dimensional hyperplane. We call it the soliton wall. We prove that in the asymptotic region, the n-soliton solution possesses n isolated localized lumps of action density, and interpret it as n intersecting soliton walls. More precisely, each action density lump is essentially the same as a soliton wall because it preserves its shape and “velocity” except for a position shift of principal peak in the scattering process. The position shift results from the nonlinear interactions of the multi-solitons and is called the phase shift. We calculate the phase shift factors explicitly and find that the action densities can be real-valued in three kind of signatures. Finally, we show that the gauge group can be G = SU(2) in the Ultrahyperbolic space 𝕌 (the split signature (+, +, −, −)). This implies that the intersecting soliton walls could be realized in all region in N=2 string theories. It is remarkable that quasideterminants dramatically simplify the calculations and proofs.


2005 ◽  
Vol 14 (02) ◽  
pp. 215-218 ◽  
Author(s):  
B. G. SIDHARTH

It is well known that a typical Yang–Mills Gauge Field is mediated by massless Bosons. It is only through a symmetry breaking mechanism, as in the Salam–Weinberg model that the quanta of such an interaction field acquire a mass in the usual theory. Here, we demonstrate that without taking recourse to the usual symmetry breaking mechanism, it is still possible to achieve this, given a noncommutative geometrical underpinning for spacetime.


2018 ◽  
Vol 175 ◽  
pp. 14024 ◽  
Author(s):  
Nikolai Husung ◽  
Mateusz Koren ◽  
Philipp Krah ◽  
Rainer Sommer

We investigate the SU(3) Yang Mills theory at small gradient flow time and at short distances. Lattice spacings down to a = 0.015 fm are simulated with open boundary conditions to allow topology to flow in and out. We study the behaviour of the action density E(t) close to the boundaries, the feasibility of the small flow-time expansion and the extraction of the Λ-parameter from the static force at small distances. For the latter, significant deviations from the 4-loop perturbative β-function are visible at α ≈ 0.2. We still can extrapolate to extract roΛ.


2012 ◽  
Vol 8 (1) ◽  
pp. 1-15
Author(s):  
Gy. Sitkei

Motion of particles with air resistance (e.g. horizontal and inclined throwing) plays an important role in many technological processes in agriculture, wood industry and several other fields. Although, the basic equation of motion of this problem is well known, however, the solutions for practical applications are not sufficient. In this article working diagrams were developed for quick estimation of the throwing distance and the terminal velocity. Approximate solution procedures are presented in closed form with acceptable error. The working diagrams provide with arbitrary initial conditions in dimensionless form of general validity.


Sign in / Sign up

Export Citation Format

Share Document