Effect of extrinsic rearfoot posts on rearfoot position

1993 ◽  
Vol 83 (8) ◽  
pp. 447-456 ◽  
Author(s):  
RL Blake ◽  
HJ Ferguson

Twenty runners displaying abnormal subtalar joint pronation were selected for this study, the purpose of which was to investigate the effects of extrinsic rearfoot posted orthoses on frontal plane rearfoot and tibial position. Numerous temporal events were measured and compared for three different conditions: acrylic post, Birko post, and no post. The results suggested that rearfoot posts have a somewhat limited function in foot orthotic therapy and that the choice of posting material is of limited functional value.

1996 ◽  
Vol 17 (7) ◽  
pp. 406-412 ◽  
Author(s):  
Michael Raymond Pierrynowski ◽  
Steve Barry Smith

Clinicians often fabricate foot orthotic devices at the subtalar joint neutral position (STNP) to mimic the position of the rear foot during midstance. However, rear foot motion during gait, relative to the resting standing foot position, not the STNP, is often reported in the literature. The motion of the rear foot relative to a valid estimate of the STNP is unknown. In this study, six experienced foot care specialists manually placed the rear part of the feet of nine subjects at the STNP seven or eight times to obtain a valid estimate of each subject's STNP. The worst-case mean and 95% confidence interval of the STNP estimate for any one subject was 0.0° ± 0.7°. These nine subjects then walked on a motor-driven treadmill, set at 0.89 meters/sec, and three-dimensional estimates of each subject's rear foot inversion/eversion motion were obtained, then averaged over 6 to 26 strides. For most subjects, the rear foot was always everted during stance with mean and standard deviation maximal eversion (7.2° ± 1.2°) occurring at 44% of the total gait cycle. The inversion/eversion orientation during swing was characterized by 1 ° to 2° of eversion, with a small amount of inversion in early swing. These findings have implications for the fabrication of foot orthoses, since the rear foot is rarely near the STNP during stance.


2009 ◽  
Vol 33 (2) ◽  
pp. 107-116 ◽  
Author(s):  
Robert J. Butler ◽  
Joaquin A. Barrios ◽  
Todd Royer ◽  
Irene S. Davis

The purpose of this study was to examine the effects of laterally wedged foot orthotic devices, used to treat knee osteoarthritis, on frontal plane mechanics at the rearfoot and hip during walking. Thirty individuals with diagnosed medial knee osteoarthritis were recruited for this study. Three dimensional kinematics and kinetics were recorded as the subjects walked in the laboratory at an intentional walking speed. Peak eversion, eversion excursion and peak eversion moment were increased while the peak knee adduction moment was reduced in the laterally wedged orthotic condition compared to the no wedge condition. In contrast, no changes were observed in the variables of interest at the hip. There was no significant relationship between the change in the peak frontal plane moment at the rearfoot and change in the peak frontal plane moment at the knee or hip as a result of the lateral wedge. Laterally wedged foot orthotic devices, used to treat knee osteoarthritis, do not influence hip mechanics. However, they do result in increased rearfoot eversion and inversion moment. Therefore, a full medical screen of the foot should occur before laterally wedged foot orthotic devices are prescribed as a treatment for knee osteoarthritis.


2011 ◽  
Vol 27 (2) ◽  
pp. 130-136 ◽  
Author(s):  
Walter L. Jenkins ◽  
D.S. Williams ◽  
Brandon Bevil ◽  
Sara Stanley ◽  
Michael Blemker ◽  
...  

Excessive hip motion has been linked to lower extremity pathology. Foot orthoses are commonly used to control motion within lower extremity joints when lower extremity pathology and dysfunction are present. Few studies have investigated the effect of foot orthoses on hip angular kinematics during functional activities. Eighteen females and 18 males performed a vertical jump with and without a prefabricated foot orthoses to determine the biomechanical effect of foot orthoses on hip kinematics when landing from a jump. Data collection included three-dimensional motion analysis of the lower extremity. Pairedttests were performed to determine if differences existed within genders with and without foot orthoses. At the hip joint, there was significantly less hip adduction motion in the foot orthoses condition as compared with the no foot orthoses condition in females (p< .05). There were no differences between foot orthoses conditions in males. Females appear to have a different proximal response to foot orthoses when landing from a forward jump than males.


2010 ◽  
Vol 26 (4) ◽  
pp. 390-399 ◽  
Author(s):  
Christopher L. MacLean ◽  
Richard van Emmerik ◽  
Joseph Hamill

The purpose of this study was to analyze the influence of a custom foot orthotic (CFO) intervention on lower extremity intralimb coupling during a 30-min run in a group of injured runners and to compare the results to a control group of healthy runners. Three-dimensional kinematic data were collected during a 30-min run on healthy female runners (Shoe-only) and a group of female runners who had a recent history of overuse injury (Shoe-only and Shoe with custom foot orthoses). Results from the study revealed that the coordination variability and pattern for the some couplings were influenced by history of injury, foot orthotic intervention and the duration of the run. These data suggest that custom foot orthoses worn by injured runners may play a role in the maintenance of coordination variability of the tibia (transverse plane) and calcaneus (frontal plane) coupling during the Early Stance phase. In addition, it appears that the coupling angle between the knee (transverse plane) and rearfoot (frontal plane) joints becomes more symmetrical in the late stance phase as a run progresses.


2005 ◽  
Vol 95 (6) ◽  
pp. 531-541 ◽  
Author(s):  
Bart Van Gheluwe ◽  
Kevin A. Kirby ◽  
Friso Hagman

The mechanical effects of genu valgum and varum deformities on the subtalar joint were investigated. First, a theoretical model of the forces within the foot and lower extremity during relaxed bipedal stance was developed predicting the rotational effect on the subtalar joint due to genu valgum and varum deformities. Second, a kinetic gait study was performed involving 15 subjects who walked with simulated genu valgum and genu varum over a force plate and a plantar pressure mat to determine the changes in the ground reaction force vector within the frontal plane and the changes in the center-of-pressure location on the plantar foot. These results predicted that a genu varum deformity would tend to cause a subtalar pronation moment to increase or a supination moment to decrease during the contact and propulsion phases of walking. With genu valgum, it was determined that during the contact phase a subtalar pronation moment would increase, whereas in the early propulsive phase, a subtalar supination moment would increase or a pronation moment would decrease. However, the current inability to track the spatial position of the subtalar joint axis makes it difficult to determine the absolute direction and magnitudes of the subtalar joint moments. (J Am Podiatr Med Assoc 95(6): 531–541, 2005)


1996 ◽  
Vol 86 (9) ◽  
pp. 427-432 ◽  
Author(s):  
JE Tomaro ◽  
RG Burdett ◽  
AM Chadran

The purpose of this study was to determine if there was a difference between the subtalar joint ratio (transverse plane component to frontal plane component) in subjects with overuse symptoms in the foot compared with subjects with overuse symptoms in the leg and knee. Superior and posterior photographs were taken with the subtalar joint in pronation and supination while the subjects were in a seated position. The ratio of the transverse plane to frontal plane components of subtalar joint motion was calculated. A significant (p &lt; 0.05) difference in the subtalar joint ratio existed between subjects with foot overuse symptoms and subjects with leg and knee overuse symptoms.


2015 ◽  
Vol 31 (3) ◽  
pp. 149-158 ◽  
Author(s):  
Thomas G. Almonroeder ◽  
Lauren C. Benson ◽  
Kristian M. O’Connor

The mechanism of action of a foot orthotic is poorly understood. The purpose of this study was to use principal components analysis (PCA) to analyze the effects of a prefabricated foot orthotic on frontal plane knee and ankle mechanics during running. Thirty-one healthy subjects performed running trials with and without a foot orthotic and PCA was performed on the knee and ankle joint angles and moments to identify the dominant modes of variation. MANOVAs were conducted on the retained principal components of each waveform and dependent t tests (P < .05) were performed in the case of significance. Mechanics of the ankle were not affected by the foot orthotic. However, mechanics of the knee were significantly altered as subjects demonstrated an increase in the magnitude of the knee abduction moment waveform in an orthotic condition. Subjects also demonstrated a significant shift in the timing of the knee abduction moment waveform toward later in the stance phase in the orthotic condition. These orthotic effects were not related to subject’s foot mobility, measured using the navicular drop test. The mechanism of action of a foot orthotic may be related to their effect on the timing of frontal plane knee loading.


2005 ◽  
Vol 21 (1) ◽  
pp. 85-95 ◽  
Author(s):  
Kristian M. O’Connor ◽  
Joseph Hamill

The ankle joint has typically been treated as a universal joint with moments calculated about orthogonal axes and the frontal plane moment generally used to represent the net muscle action about the subtalar joint. However, this joint acts about an oblique axis. The purpose of this study was to examine the differences between joint moments calculated about the orthogonal frontal plane axis and an estimated subtalar joint axis. Three-dimensional data were colected on 10 participants running at 3.6 m/s. Joint moments, power, and work were calculated about the orthogonal frontal plane axis of the foot and about an oblique axis representing the subtalar joint. Selected parameters were compared with a paired t-test (α = 0.05). The results indicated that the joint moments calculated about the two axes were characteristically different. A moment calculated about an orthogonal frontal plane axis of the foot resulted in a joint moment that was invertor in nature during the first half of stance, but evertor during the second half of stance. The subtalar joint axis moment, however, was invertor during most of the stance. These two patterns may result in qualitatively different interpretations of the muscular contributions at the ankle during the stance phase of running.


2009 ◽  
Vol 99 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Javier Pascual Huerta ◽  
Juan Manuel Ropa Moreno ◽  
Kevin A. Kirby

Background: Research on foot orthoses has shown that their effect on the kinematics of the rearfoot is variable, with no consistent patterns of changes being demonstrated. It has also been hypothesized that the mechanical effect of foot orthoses could be subject specific. The purpose of our study was to determine if maximally pronated feet have a different response to frontal plane wedging of foot orthoses than do nonmaximally pronated feet during static stance. Methods: One hundred six feet of 53 healthy asymptomatic subjects were divided into two groups (maximally pronated and nonmaximally pronated) on the basis of their subtalar joint rotational position during relaxed bipedal stance. Functional foot orthoses were constructed for each subject and the relaxed calcaneal stance position was measured while standing on five separate frontal plane orthosis wedging conditions, 10° valgus, 5° valgus, no wedging, 5° varus, and 10° varus, to assess changes in calcaneal position. Results: Relative to the no-wedging condition, there were statistically significant differences (P &lt; .05) in calcaneal position between the maximally pronated and the nonmaximally pronated feet with the 10° valgus and the 10° varus wedging conditions. No significant differences in calcaneal position were found with the 5° varus and the 5° valgus wedging conditions. Conclusions: Our study shows that the response to foot orthoses is variable between individuals. Maximally pronated subjects do not exhibit the same response to frontal plane wedging of foot orthoses as do nonmaximally pronated with 10° wedging. Intrinsic biomechanical factors such as subtalar joint position may influence the response to foot orthoses. (J Am Podiatr Med Assoc 99(1): 13–19, 2009)


Sign in / Sign up

Export Citation Format

Share Document