scholarly journals Cell-intrinsic mechanisms of temperature compensation in a grasshopper sensory receptor neuron

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Frederic A Roemschied ◽  
Monika JB Eberhard ◽  
Jan-Hendrik Schleimer ◽  
Bernhard Ronacher ◽  
Susanne Schreiber

Changes in temperature affect biochemical reaction rates and, consequently, neural processing. The nervous systems of poikilothermic animals must have evolved mechanisms enabling them to retain their functionality under varying temperatures. Auditory receptor neurons of grasshoppers respond to sound in a surprisingly temperature-compensated manner: firing rates depend moderately on temperature, with average Q10 values around 1.5. Analysis of conductance-based neuron models reveals that temperature compensation of spike generation can be achieved solely relying on cell-intrinsic processes and despite a strong dependence of ion conductances on temperature. Remarkably, this type of temperature compensation need not come at an additional metabolic cost of spike generation. Firing rate-based information transfer is likely to increase with temperature and we derive predictions for an optimal temperature dependence of the tympanal transduction process fostering temperature compensation. The example of auditory receptor neurons demonstrates how neurons may exploit single-cell mechanisms to cope with multiple constraints in parallel.

2021 ◽  
Author(s):  
Masaki Sasai

When the mixture solution of cyanobacterial proteins, KaiA, KaiB, and KaiC, is incubated with ATP in vitro, the phosphorylation level of KaiC shows stable oscillations with the temperature-compensated circadian period. We analyzed this temperature compensation by developing a theoretical model describing the feedback relations among reactions and structural transitions in the KaiC molecule. The model showed that the reduced structural cooperativity should weaken the negative feedback coupling among reactions and structural transitions, which enlarges the oscillation amplitude and period, explaining the observed significant period extension upon single amino-acid residue substitution. We propose that an increase in thermal fluctuations similarly attenuates the reaction-structure feedback, explaining the temperature compensation in the KaiABC clock. The model suggests that the ATPase reactions in the CI domain of KaiC affect the period depending on how the reaction rates are modulated. The KaiABC clock provides a unique opportunity to analyze how the reaction-structure coupling regulates the system-level synchronized oscillations of molecules.


2001 ◽  
Vol 21 (9) ◽  
pp. 3215-3227 ◽  
Author(s):  
Christian K. Machens ◽  
Martin B. Stemmler ◽  
Petra Prinz ◽  
Rüdiger Krahe ◽  
Bernhard Ronacher ◽  
...  

2015 ◽  
Vol 5 (2) ◽  
pp. 109-119 ◽  
Author(s):  
Sou Nobukawa ◽  
Haruhiko Nishimura ◽  
Teruya Yamanishi ◽  
Jian-Qin Liu

Abstract Several hybrid neuron models, which combine continuous spike-generation mechanisms and discontinuous resetting process after spiking, have been proposed as a simple transition scheme for membrane potential between spike and hyperpolarization. As one of the hybrid spiking neuron models, Izhikevich neuron model can reproduce major spike patterns observed in the cerebral cortex only by tuning a few parameters and also exhibit chaotic states in specific conditions. However, there are a few studies concerning the chaotic states over a large range of parameters due to the difficulty of dealing with the state dependent jump on the resetting process in this model. In this study, we examine the dependence of the system behavior on the resetting parameters by using Lyapunov exponent with saltation matrix and Poincaré section methods, and classify the routes to chaos.


Author(s):  
Chengcheng Huang ◽  
Alexandre Pouget ◽  
Brent Doiron

AbstractHow neuronal variability impacts neuronal codes is a central question in systems neuroscience, often with complex and model dependent answers. Most population models are parametric, with a tacitly assumed structure of neuronal tuning and population-wide variability. While these models provide key insights, they purposely divorce any mechanistic relationship between trial average and trial variable neuronal activity. By contrast, circuit based models produce activity with response statistics that are reflection of the underlying circuit structure, and thus any relations between trial averaged and trial variable activity are emergent rather than assumed. In this work, we study information transfer in networks of spatially ordered spiking neuron models with strong excitatory and inhibitory interactions, capable of producing rich population-wide neuronal variability. Motivated by work in the visual system we embed a columnar stimulus orientation map in the network and measure the population estimation of an orientated input. We show that the spatial structure of feedforward and recurrent connectivity are critical determinants for population code performance. In particular, when network wiring supports stable firing rate activity then with a sufficiently large number of decoded neurons all available stimulus information is transmitted. However, if the inhibitory projections place network activity in a pattern forming regime then the population-wide dynamics compromise information flow. In total, network connectivity determines both the stimulus tuning as well as internally generated population-wide fluctuations and thereby dictates population code performance in complicated ways where modeling efforts provide essential understanding.


2014 ◽  
Author(s):  
Frederic A Roemschied ◽  
Monika JB Eberhard ◽  
Jan-Hendrik Schleimer ◽  
Bernhard Ronacher ◽  
Susanne Schreiber

2004 ◽  
Vol 04 (01) ◽  
pp. L195-L205 ◽  
Author(s):  
MAURICE J. CHACRON ◽  
BENJAMIN LINDNER ◽  
ANDRÉ LONGTIN

Neurons produce action potentials or spikes in response to a wide variety of inputs. Correlations between interspike intervals are often seen in data from single neurons, and are due to a combination of intrinsic mechanisms and the temporal properties of the input stimulus. Here we review recent progress in our understanding of how intrinsic correlations arise in simple biophysically justified neuron models. We further describe the generic conditions under which these correlations enhance the rate of transfer of information about time-varying stimuli. This work points to the importance of studying non-renewal first passage time problems in nonlinear dynamical systems.


2010 ◽  
Vol 103 (3) ◽  
pp. 1614-1621 ◽  
Author(s):  
Patrick Sabourin ◽  
Gerald S. Pollack

Auditory receptor neurons of crickets are most sensitive to either low or high sound frequencies. Earlier work showed that the temporal coding properties of first-order auditory interneurons are matched to the temporal characteristics of natural low- and high-frequency stimuli (cricket songs and bat echolocation calls, respectively). We studied the temporal coding properties of receptor neurons and used modeling to investigate how activity within populations of low- and high-frequency receptors might contribute to the coding properties of interneurons. We confirm earlier findings that individual low-frequency-tuned receptors code stimulus temporal pattern poorly, but show that coding performance of a receptor population increases markedly with population size, due in part to low redundancy among the spike trains of different receptors. By contrast, individual high-frequency-tuned receptors code a stimulus temporal pattern fairly well and, because their spike trains are redundant, there is only a slight increase in coding performance with population size. The coding properties of low- and high-frequency receptor populations resemble those of interneurons in response to low- and high-frequency stimuli, suggesting that coding at the interneuron level is partly determined by the nature and organization of afferent input. Consistent with this, the sound-frequency-specific coding properties of an interneuron, previously demonstrated by analyzing its spike train, are also apparent in the subthreshold fluctuations in membrane potential that are generated by synaptic input from receptor neurons.


2008 ◽  
Vol 63 (3-4) ◽  
pp. 159-169
Author(s):  
Hamzeh M. Abdel-Halim ◽  
Sawsan M. Jaafreh

Classical trajectory calculations for various atom-diatomic molecules were preformed using the three-dimensional Monte Carlo method. The reaction probabilities, cross-sections and rate constants of several systems were calculated. Equations of motion, which predict the positions and momenta of the colliding particles after each step, have been integrated numerically by the Runge-Kutta-Gill and Adams-Moulton methods. Morse potential energy surfaces were used to describe the interaction between the atom and each atom in the diatomic molecules. The results were compared with experimental ones and with other theoretical values. Good agreement was obtained between calculated rate constants and those obtained experimentally. Also, reasonable agreement was observed with theoretical rate constants obtained by other investigators using different calculation methods. The effects of the temperature, the nature of the colliding particles and the thermochemistry were studied. The results showed a strong dependence of the reaction rates on these factors.


Sign in / Sign up

Export Citation Format

Share Document