scholarly journals Internally generated population activity in cortical networks hinders information transmission

Author(s):  
Chengcheng Huang ◽  
Alexandre Pouget ◽  
Brent Doiron

AbstractHow neuronal variability impacts neuronal codes is a central question in systems neuroscience, often with complex and model dependent answers. Most population models are parametric, with a tacitly assumed structure of neuronal tuning and population-wide variability. While these models provide key insights, they purposely divorce any mechanistic relationship between trial average and trial variable neuronal activity. By contrast, circuit based models produce activity with response statistics that are reflection of the underlying circuit structure, and thus any relations between trial averaged and trial variable activity are emergent rather than assumed. In this work, we study information transfer in networks of spatially ordered spiking neuron models with strong excitatory and inhibitory interactions, capable of producing rich population-wide neuronal variability. Motivated by work in the visual system we embed a columnar stimulus orientation map in the network and measure the population estimation of an orientated input. We show that the spatial structure of feedforward and recurrent connectivity are critical determinants for population code performance. In particular, when network wiring supports stable firing rate activity then with a sufficiently large number of decoded neurons all available stimulus information is transmitted. However, if the inhibitory projections place network activity in a pattern forming regime then the population-wide dynamics compromise information flow. In total, network connectivity determines both the stimulus tuning as well as internally generated population-wide fluctuations and thereby dictates population code performance in complicated ways where modeling efforts provide essential understanding.

2010 ◽  
Vol 104 (2) ◽  
pp. 1052-1060 ◽  
Author(s):  
Miriam Ivenshitz ◽  
Menahem Segal

The effects of neuronal density on morphological and functional attributes of the evolving networks were studied in cultured dissociated hippocampal neurons. Plating at different densities affected connectivity among the neurons, such that sparse networks exhibited stronger synaptic connections between pairs of recorded neurons. This was associated with different patterns of spontaneous network activity with enhanced burst size but reduced burst frequency in the sparse cultures. Neuronal density also affected the morphology of the dendrites and spines of these neurons, such that sparse neurons had a simpler dendritic tree and fewer dendritic spines. Additionally, analysis of neurons transfected with PSD95 revealed that in sparse cultures the synapses are formed on the dendritic shaft, whereas in dense cultures the synapses are formed primarily on spine heads. These experiments provide important clues on the role of neuronal density in population activity and should yield new insights into the rules governing neuronal network connectivity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hamidreza Abbaspourazad ◽  
Mahdi Choudhury ◽  
Yan T. Wong ◽  
Bijan Pesaran ◽  
Maryam M. Shanechi

AbstractMotor function depends on neural dynamics spanning multiple spatiotemporal scales of population activity, from spiking of neurons to larger-scale local field potentials (LFP). How multiple scales of low-dimensional population dynamics are related in control of movements remains unknown. Multiscale neural dynamics are especially important to study in naturalistic reach-and-grasp movements, which are relatively under-explored. We learn novel multiscale dynamical models for spike-LFP network activity in monkeys performing naturalistic reach-and-grasps. We show low-dimensional dynamics of spiking and LFP activity exhibited several principal modes, each with a unique decay-frequency characteristic. One principal mode dominantly predicted movements. Despite distinct principal modes existing at the two scales, this predictive mode was multiscale and shared between scales, and was shared across sessions and monkeys, yet did not simply replicate behavioral modes. Further, this multiscale mode’s decay-frequency explained behavior. We propose that multiscale, low-dimensional motor cortical state dynamics reflect the neural control of naturalistic reach-and-grasp behaviors.


2015 ◽  
Vol 27 (6) ◽  
pp. 1186-1222 ◽  
Author(s):  
Bryan P. Tripp

Because different parts of the brain have rich interconnections, it is not possible to model small parts realistically in isolation. However, it is also impractical to simulate large neural systems in detail. This article outlines a new approach to multiscale modeling of neural systems that involves constructing efficient surrogate models of populations. Given a population of neuron models with correlated activity and with specific, nonrandom connections, a surrogate model is constructed in order to approximate the aggregate outputs of the population. The surrogate model requires less computation than the neural model, but it has a clear and specific relationship with the neural model. For example, approximate spike rasters for specific neurons can be derived from a simulation of the surrogate model. This article deals specifically with neural engineering framework (NEF) circuits of leaky-integrate-and-fire point neurons. Weighted sums of spikes are modeled by interpolating over latent variables in the population activity, and linear filters operate on gaussian random variables to approximate spike-related fluctuations. It is found that the surrogate models can often closely approximate network behavior with orders-of-magnitude reduction in computational demands, although there are certain systematic differences between the spiking and surrogate models. Since individual spikes are not modeled, some simulations can be performed with much longer steps sizes (e.g., 20 ms). Possible extensions to non-NEF networks and to more complex neuron models are discussed.


Author(s):  
Mohammad S.E Sendi ◽  
Godfrey D Pearlson ◽  
Daniel H Mathalon ◽  
Judith M Ford ◽  
Adrian Preda ◽  
...  

Although visual processing impairments have been explored in schizophrenia (SZ), their underlying neurobiology of the visual processing impairments has not been widely studied. Also, while some research has hinted at differences in information transfer and flow in SZ, there are few investigations of the dynamics of functional connectivity within visual networks. In this study, we analyzed resting-state fMRI data of the visual sensory network (VSN) in 160 healthy control (HC) subjects and 151 SZ subjects. We estimated 9 independent components within the VSN. Then, we calculated the dynamic functional network connectivity (dFNC) using the Pearson correlation. Next, using k-means clustering, we partitioned the dFNCs into five distinct states, and then we calculated the portion of time each subject spent in each state, that we termed the occupancy rate (OCR). Using OCR, we compared HC with SZ subjects and investigated the link between OCR and visual learning in SZ subjects. Besides, we compared the VSN functional connectivity of SZ and HC subjects in each state. We found that this network is indeed highly dynamic. Each state represents a unique connectivity pattern of fluctuations in VSN FNC, and all states showed significant disruption in SZ. Overall, HC showed stronger connectivity within the VSN in states. SZ subjects spent more time in a state in which the connectivity between the middle temporal gyrus and other regions of VNS is highly negative. Besides, OCR in a state with strong positive connectivity between middle temporal gyrus and other regions correlated significantly with visual learning scores in SZ.


2019 ◽  
Author(s):  
James D. Howard ◽  
Rachel Reynolds ◽  
Devyn E. Smith ◽  
Joel L. Voss ◽  
Geoffrey Schoenbaum ◽  
...  

ABSTRACTOutcome-guided behavior requires knowledge about the current value of expected outcomes. Such behavior can be isolated in the reinforcer devaluation task, which assesses the ability to infer the current value of rewards after devaluation. Animal lesion studies demonstrate that orbitofrontal cortex (OFC) is necessary for normal behavior in this task, but a causal role for human OFC in outcome-guided behavior has not been established. Here we used sham-controlled non-invasive continuous theta-burst stimulation (cTBS) to temporarily disrupt human OFC network activity prior to devaluation of food odor rewards in a between-subjects design. Subjects in the sham group appropriately avoided Pavlovian cues associated with devalued food odors. However, subjects in the stimulation group persistently chose those cues, even though devaluation of food odors themselves was unaffected by cTBS. This behavioral impairment was mirrored in changes in resting-stated functional magnetic resonance imaging (rs-fMRI) activity, such that subjects in the stimulation group exhibited reduced global OFC network connectivity after cTBS, and the magnitude of this reduction was correlated with choices after devaluation. These findings demonstrate the feasibility of indirectly targeting the human OFC with non-invasive cTBS, and indicate that OFC is specifically required for inferring the value of expected outcomes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mouhamed Alsaqati ◽  
Vivi M. Heine ◽  
Adrian J. Harwood

Abstract Background Tuberous sclerosis complex (TSC) is a rare genetic multisystemic disorder resulting from autosomal dominant mutations in the TSC1 or TSC2 genes. It is characterised by hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway and has severe neurodevelopmental and neurological components including autism, intellectual disability and epilepsy. In human and rodent models, loss of the TSC proteins causes neuronal hyperexcitability and synaptic dysfunction, although the consequences of these changes for the developing central nervous system are currently unclear. Methods Here we apply multi-electrode array-based assays to study the effects of TSC2 loss on neuronal network activity using autism spectrum disorder (ASD) patient-derived iPSCs. We examine both temporal synchronisation of neuronal bursting and spatial connectivity between electrodes across the network. Results We find that ASD patient-derived neurons with a functional loss of TSC2, in addition to possessing neuronal hyperactivity, develop a dysfunctional neuronal network with reduced synchronisation of neuronal bursting and lower spatial connectivity. These deficits of network function are associated with elevated expression of genes for inhibitory GABA signalling and glutamate signalling, indicating a potential abnormality of synaptic inhibitory–excitatory signalling. mTORC1 activity functions within a homeostatic triad of protein kinases, mTOR, AMP-dependent protein Kinase 1 (AMPK) and Unc-51 like Autophagy Activating Kinase 1 (ULK1) that orchestrate the interplay of anabolic cell growth and catabolic autophagy while balancing energy and nutrient homeostasis. The mTOR inhibitor rapamycin suppresses neuronal hyperactivity, but does not increase synchronised network activity, whereas activation of AMPK restores some aspects of network activity. In contrast, the ULK1 activator, LYN-1604, increases the network behaviour, shortens the network burst lengths and reduces the number of uncorrelated spikes. Limitations Although a robust and consistent phenotype is observed across multiple independent iPSC cultures, the results are based on one patient. There may be more subtle differences between patients with different TSC2 mutations or differences of polygenic background within their genomes. This may affect the severity of the network deficit or the pharmacological response between TSC2 patients. Conclusions Our observations suggest that there is a reduction in the network connectivity of the in vitro neuronal network associated with ASD patients with TSC2 mutation, which may arise via an excitatory/inhibitory imbalance due to increased GABA-signalling at inhibitory synapses. This abnormality can be effectively suppressed via activation of ULK1.


2007 ◽  
Vol 292 (1) ◽  
pp. C508-C516 ◽  
Author(s):  
Frank Funke ◽  
Mathias Dutschmann ◽  
Michael Müller

The pre-Bötzinger complex (PBC) in the rostral ventrolateral medulla contains a kernel involved in respiratory rhythm generation. So far, its respiratory activity has been analyzed predominantly by electrophysiological approaches. Recent advances in fluorescence imaging now allow for the visualization of neuronal population activity in rhythmogenic networks. In the respiratory network, voltage-sensitive dyes have been used mainly, so far, but their low sensitivity prevents an analysis of activity patterns of single neurons during rhythmogenesis. We now have succeeded in using more sensitive Ca2+ imaging to study respiratory neurons in rhythmically active brain stem slices of neonatal rats. For the visualization of neuronal activity, fluo-3 was suited best in terms of neuronal specificity, minimized background fluorescence, and response magnitude. The tissue penetration of fluo-3 was improved by hyperosmolar treatment (100 mM mannitol) during dye loading. Rhythmic population activity was imaged with single-cell resolution using a sensitive charge-coupled device camera and a ×20 objective, and it was correlated with extracellularly recorded mass activity of the contralateral PBC. Correlated optical neuronal activity was obvious online in 29% of slices. Rhythmic neurons located deeper became detectable during offline image processing. Based on their activity patterns, 74% of rhythmic neurons were classified as inspiratory and 26% as expiratory neurons. Our approach is well suited to visualize and correlate the activity of several single cells with respiratory network activity. We demonstrate that neuronal synchronization and possibly even network configurations can be analyzed in a noninvasive approach with single-cell resolution and at frame rates currently not reached by most scanning-based imaging techniques.


2017 ◽  
Vol 114 (50) ◽  
pp. 13290-13295 ◽  
Author(s):  
Victoria Leong ◽  
Elizabeth Byrne ◽  
Kaili Clackson ◽  
Stanimira Georgieva ◽  
Sarah Lam ◽  
...  

When infants and adults communicate, they exchange social signals of availability and communicative intention such as eye gaze. Previous research indicates that when communication is successful, close temporal dependencies arise between adult speakers’ and listeners’ neural activity. However, it is not known whether similar neural contingencies exist within adult–infant dyads. Here, we used dual-electroencephalography to assess whether direct gaze increases neural coupling between adults and infants during screen-based and live interactions. In experiment 1 (n = 17), infants viewed videos of an adult who was singing nursery rhymes with (i) direct gaze (looking forward), (ii) indirect gaze (head and eyes averted by 20°), or (iii) direct-oblique gaze (head averted but eyes orientated forward). In experiment 2 (n = 19), infants viewed the same adult in a live context, singing with direct or indirect gaze. Gaze-related changes in adult–infant neural network connectivity were measured using partial directed coherence. Across both experiments, the adult had a significant (Granger) causal influence on infants’ neural activity, which was stronger during direct and direct-oblique gaze relative to indirect gaze. During live interactions, infants also influenced the adult more during direct than indirect gaze. Further, infants vocalized more frequently during live direct gaze, and individual infants who vocalized longer also elicited stronger synchronization from the adult. These results demonstrate that direct gaze strengthens bidirectional adult–infant neural connectivity during communication. Thus, ostensive social signals could act to bring brains into mutual temporal alignment, creating a joint-networked state that is structured to facilitate information transfer during early communication and learning.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1277 ◽  
Author(s):  
Gabriele Scheler

Background: The roles of neuromodulation in a neural network, such as in a cortical microcolumn, are still incompletely understood. Neuromodulation influences neural processing by presynaptic and postsynaptic regulation of synaptic efficacy. Neuromodulation also affects ion channels and intrinsic excitability. Methods: Synaptic efficacy modulation is an effective way to rapidly alter network density and topology. We alter network topology and density to measure the effect on spike synchronization. We also operate with differently parameterized neuron models which alter the neuron's intrinsic excitability, i.e., activation function. Results: We find that (a) fast synaptic efficacy modulation influences the amount of correlated spiking in a network. Also, (b) synchronization in a network influences the read-out of intrinsic properties. Highly synchronous input drives neurons, such that differences in intrinsic properties disappear, while asynchronous input lets intrinsic properties determine output behavior. Thus, altering network topology can alter the balance between intrinsically vs. synaptically driven network activity. Conclusion: We conclude that neuromodulation may allow a network to shift between a more synchronized transmission mode and a more asynchronous intrinsic read-out mode. This has significant implications for our understanding of the flexibility of cortical computations.


2021 ◽  
Author(s):  
Shreya Saxena ◽  
Abigail A. Russo ◽  
John P. Cunningham ◽  
Mark M. Churchland

AbstractLearned movements can be skillfully performed at different paces. What neural strategies produce this flexibility? Can they be predicted and understood by network modeling? We trained monkeys to perform a cycling task at different speeds, and trained artificial recurrent networks to generate the empirical muscle-activity patterns. Network solutions reflected the principle that smooth well-behaved dynamics require low trajectory tangling, and yielded quantitative and qualitative predictions. To evaluate predictions, we recorded motor cortex population activity during the same task. Responses supported the hypothesis that the dominant neural signals reflect not muscle activity, but network-level strategies for generating muscle activity. Single-neuron responses were better accounted for by network activity than by muscle activity. Similarly, neural population trajectories shared their organization not with muscle trajectories, but with network solutions. Thus, cortical activity could be understood based on the need to generate muscle activity via dynamics that allow smooth, robust control over movement speed.


Sign in / Sign up

Export Citation Format

Share Document