scholarly journals DNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent ATPase

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Aysen L Erdem ◽  
Malgorzata Jaszczur ◽  
Jeffrey G Bertram ◽  
Roger Woodgate ◽  
Michael M Cox ◽  
...  

Escherichia coli DNA polymerase V (pol V), a heterotrimeric complex composed of UmuD′2C, is marginally active. ATP and RecA play essential roles in the activation of pol V for DNA synthesis including translesion synthesis (TLS). We have established three features of the roles of ATP and RecA. (1) RecA-activated DNA polymerase V (pol V Mut), is a DNA-dependent ATPase; (2) bound ATP is required for DNA synthesis; (3) pol V Mut function is regulated by ATP, with ATP required to bind primer/template (p/t) DNA and ATP hydrolysis triggering dissociation from the DNA. Pol V Mut formed with an ATPase-deficient RecA E38K/K72R mutant hydrolyzes ATP rapidly, establishing the DNA-dependent ATPase as an intrinsic property of pol V Mut distinct from the ATP hydrolytic activity of RecA when bound to single-stranded (ss)DNA as a nucleoprotein filament (RecA*). No similar ATPase activity or autoregulatory mechanism has previously been found for a DNA polymerase.

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1083
Author(s):  
Adhirath Sikand ◽  
Malgorzata Jaszczur ◽  
Linda B. Bloom ◽  
Roger Woodgate ◽  
Michael M. Cox ◽  
...  

In the mid 1970s, Miroslav Radman and Evelyn Witkin proposed that Escherichia coli must encode a specialized error-prone DNA polymerase (pol) to account for the 100-fold increase in mutations accompanying induction of the SOS regulon. By the late 1980s, genetic studies showed that SOS mutagenesis required the presence of two “UV mutagenesis” genes, umuC and umuD, along with recA. Guided by the genetics, decades of biochemical studies have defined the predicted error-prone DNA polymerase as an activated complex of these three gene products, assembled as a mutasome, pol V Mut = UmuD’2C-RecA-ATP. Here, we explore the role of the β-sliding processivity clamp on the efficiency of pol V Mut-catalyzed DNA synthesis on undamaged DNA and during translesion DNA synthesis (TLS). Primer elongation efficiencies and TLS were strongly enhanced in the presence of β. The results suggest that β may have two stabilizing roles: its canonical role in tethering the pol at a primer-3’-terminus, and a possible second role in inhibiting pol V Mut’s ATPase to reduce the rate of mutasome-DNA dissociation. The identification of umuC, umuD, and recA homologs in numerous strains of pathogenic bacteria and plasmids will ensure the long and productive continuation of the genetic and biochemical journey initiated by Radman and Witkin.


2002 ◽  
Vol 184 (10) ◽  
pp. 2674-2681 ◽  
Author(s):  
Angela Borden ◽  
Paul I. O'Grady ◽  
Dominique Vandewiele ◽  
Antonio R. Fernández de Henestrosa ◽  
Christopher W. Lawrence ◽  
...  

ABSTRACT Although very little replication past a T-T cis-syn cyclobutane dimer normally takes place in Escherichia coli in the absence of DNA polymerase V (Pol V), we previously observed as much as half of the wild-type bypass frequency in Pol V-deficient (ΔumuDC) strains if the 3′ to 5′ exonuclease proofreading activity of the Pol III ε subunit was also disabled by mutD5. This observation might be explained in at least two ways. In the absence of Pol V, wild-type Pol III might bind preferentially to the blocked primer terminus but be incapable of bypass, whereas the proofreading-deficient enzyme might dissociate more readily, providing access to bypass polymerases. Alternatively, even though wild-type Pol III is generally regarded as being incapable of lesion bypass, proofreading-impaired Pol III might itself perform this function. We have investigated this issue by examining dimer bypass frequencies in ΔumuDC mutD5 strains that were also deficient for Pol I, Pol II, and Pol IV, both singly and in all combinations. Dimer bypass frequencies were not decreased in any of these strains and indeed in some were increased to levels approaching those found in strains containing Pol V. Efficient dimer bypass was, however, entirely dependent on the proofreading deficiency imparted by mutD5, indicating the surprising conclusion that bypass was probably performed by the mutD5 Pol III enzyme itself. This mutant polymerase does not replicate past the much more distorted T-T (6-4) photoadduct, however, suggesting that it may only replicate past lesions, like the T-T dimer, that form base pairs normally.


2005 ◽  
Vol 187 (20) ◽  
pp. 6953-6961 ◽  
Author(s):  
Charmain T. Courcelle ◽  
Jerilyn J. Belle ◽  
Justin Courcelle

ABSTRACT Nucleotide excision repair and translesion DNA synthesis are two processes that operate at arrested replication forks to reduce the frequency of recombination and promote cell survival following UV-induced DNA damage. While nucleotide excision repair is generally considered to be error free, translesion synthesis can result in mutations, making it important to identify the order and conditions that determine when each process is recruited to the arrested fork. We show here that at early times following UV irradiation, the recovery of DNA synthesis occurs through nucleotide excision repair of the lesion. In the absence of repair or when the repair capacity of the cell has been exceeded, translesion synthesis by polymerase V (Pol V) allows DNA synthesis to resume and is required to protect the arrested replication fork from degradation. Pol II and Pol IV do not contribute detectably to survival, mutagenesis, or restoration of DNA synthesis, suggesting that, in vivo, these polymerases are not functionally redundant with Pol V at UV-induced lesions. We discuss a model in which cells first use DNA repair to process replication-arresting UV lesions before resorting to mutagenic pathways such as translesion DNA synthesis to bypass these impediments to replication progression.


2002 ◽  
Vol 99 (17) ◽  
pp. 11061-11066 ◽  
Author(s):  
P. Pham ◽  
E. M. Seitz ◽  
S. Saveliev ◽  
X. Shen ◽  
R. Woodgate ◽  
...  

Biochemistry ◽  
2016 ◽  
Vol 55 (16) ◽  
pp. 2309-2318 ◽  
Author(s):  
Malgorzata Jaszczur ◽  
Jeffrey G. Bertram ◽  
Andrew Robinson ◽  
Antoine M. van Oijen ◽  
Roger Woodgate ◽  
...  

2006 ◽  
Vol 20 (5) ◽  
Author(s):  
Mark David Sutton ◽  
Laurie Sanders ◽  
Sarah Ponticelli ◽  
Jill Duzen ◽  
Robert Maul ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Olga Rechkoblit ◽  
Robert E. Johnson ◽  
Yogesh K. Gupta ◽  
Louise Prakash ◽  
Satya Prakash ◽  
...  

AbstractPrimPol is a human DNA polymerase-primase that localizes to mitochondria and nucleus and bypasses the major oxidative lesion 7,8-dihydro-8-oxoguanine (oxoG) via translesion synthesis, in mostly error-free manner. We present structures of PrimPol insertion complexes with a DNA template-primer and correct dCTP or erroneous dATP opposite the lesion, as well as extension complexes with C or A as a 3′−terminal primer base. We show that during the insertion of C and extension from it, the active site is unperturbed, reflecting the readiness of PrimPol to accommodate oxoG(anti). The misinsertion of A opposite oxoG(syn) also does not alter the active site, and is likely less favorable due to lower thermodynamic stability of the oxoG(syn)•A base-pair. During the extension step, oxoG(syn) induces an opening of its base-pair with A or misalignment of the 3′-A primer terminus. Together, the structures show how PrimPol accurately synthesizes DNA opposite oxidatively damaged DNA in human cells.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Myron Goodman ◽  
Aysen Erdem ◽  
Malgorzata Jaszczur ◽  
Jeffrey Bertram ◽  
Roger Woodgate ◽  
...  

2014 ◽  
Author(s):  
Aysen L Erdem ◽  
Malgorzata Jaszczur ◽  
Jeffrey G Bertram ◽  
Roger Woodgate ◽  
Michael M Cox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document