scholarly journals Escherichia coli DNA Polymerase III Can Replicate Efficiently past a T-T cis-syn Cyclobutane Dimer if DNA Polymerase V and the 3′ to 5′ Exonuclease Proofreading Function Encoded by dnaQ Are Inactivated

2002 ◽  
Vol 184 (10) ◽  
pp. 2674-2681 ◽  
Author(s):  
Angela Borden ◽  
Paul I. O'Grady ◽  
Dominique Vandewiele ◽  
Antonio R. Fernández de Henestrosa ◽  
Christopher W. Lawrence ◽  
...  

ABSTRACT Although very little replication past a T-T cis-syn cyclobutane dimer normally takes place in Escherichia coli in the absence of DNA polymerase V (Pol V), we previously observed as much as half of the wild-type bypass frequency in Pol V-deficient (ΔumuDC) strains if the 3′ to 5′ exonuclease proofreading activity of the Pol III ε subunit was also disabled by mutD5. This observation might be explained in at least two ways. In the absence of Pol V, wild-type Pol III might bind preferentially to the blocked primer terminus but be incapable of bypass, whereas the proofreading-deficient enzyme might dissociate more readily, providing access to bypass polymerases. Alternatively, even though wild-type Pol III is generally regarded as being incapable of lesion bypass, proofreading-impaired Pol III might itself perform this function. We have investigated this issue by examining dimer bypass frequencies in ΔumuDC mutD5 strains that were also deficient for Pol I, Pol II, and Pol IV, both singly and in all combinations. Dimer bypass frequencies were not decreased in any of these strains and indeed in some were increased to levels approaching those found in strains containing Pol V. Efficient dimer bypass was, however, entirely dependent on the proofreading deficiency imparted by mutD5, indicating the surprising conclusion that bypass was probably performed by the mutD5 Pol III enzyme itself. This mutant polymerase does not replicate past the much more distorted T-T (6-4) photoadduct, however, suggesting that it may only replicate past lesions, like the T-T dimer, that form base pairs normally.

2007 ◽  
Vol 189 (13) ◽  
pp. 4688-4695 ◽  
Author(s):  
Robert W. Maul ◽  
Laurie H. Sanders ◽  
James B. Lim ◽  
Rosemary Benitez ◽  
Mark D. Sutton

ABSTRACT The Escherichia coli dnaN159 allele encodes a mutant form of the β-sliding clamp (β159) that is impaired for interaction with the replicative DNA polymerase (Pol), Pol III. In addition, strains bearing the dnaN159 allele require functional Pol I for viability. We have utilized a combination of genetic and biochemical approaches to characterize the role(s) played by Pol I in the dnaN159 strain. Our findings indicate that elevated levels of Pol I partially suppress the temperature-sensitive growth phenotype of the dnaN159 strain. In addition, we demonstrate that the β clamp stimulates the processivity of Pol I in vitro and that β159 is impaired for this activity. The reduced ability of β159 to stimulate Pol I in vitro correlates with our finding that single-stranded DNA (ssDNA) gap repair is impaired in the dnaN159 strain. Taken together, these results suggest that (i) the β clamp-Pol I interaction may be important for proper Pol I function in vivo and (ii) in the absence of Pol I, ssDNA gaps may persist in the dnaN159 strain, leading to lethality of the dnaN159 ΔpolA strain.


2004 ◽  
Vol 186 (20) ◽  
pp. 6738-6748 ◽  
Author(s):  
Mark D. Sutton

ABSTRACT The Escherichia coli β sliding clamp, which is encoded by the dnaN gene, is reported to interact with a variety of proteins involved in different aspects of DNA metabolism. Recent findings indicate that many of these partner proteins interact with a common surface on the β clamp, suggesting that competition between these partners for binding to the clamp might help to coordinate both the nature and order of the events that take place at a replication fork. The purpose of the experiments discussed in this report was to test a prediction of this model, namely, that a mutant β clamp protein impaired for interactions with the replicative DNA polymerase (polymerase III [Pol III]) would likewise have impaired interactions with other partner proteins and hence would display pleiotropic phenotypes. Results discussed herein indicate that the dnaN159-encoded mutant β clamp protein (β159) is impaired for interactions with the α catalytic subunit of Pol III. Moreover, the dnaN159 mutant strain displayed multiple replication and repair phenotypes, including sensitivity to UV light, an absolute dependence on the polymerase activity of Pol I for viability, enhanced Pol V-dependent mutagenesis, and altered induction of the global SOS response. Furthermore, epistasis analyses indicated that the UV sensitivity of the dnaN159 mutant was suppressed by (not epistatic with) inactivation of Pol IV (dinB gene product). Taken together, these findings suggest that in the dnaN159 mutant, DNA polymerase usage, and hence DNA replication, repair, and translesion synthesis, are altered. These findings are discussed in terms of a model to describe how the β clamp might help to coordinate protein traffic at the replication fork.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1083
Author(s):  
Adhirath Sikand ◽  
Malgorzata Jaszczur ◽  
Linda B. Bloom ◽  
Roger Woodgate ◽  
Michael M. Cox ◽  
...  

In the mid 1970s, Miroslav Radman and Evelyn Witkin proposed that Escherichia coli must encode a specialized error-prone DNA polymerase (pol) to account for the 100-fold increase in mutations accompanying induction of the SOS regulon. By the late 1980s, genetic studies showed that SOS mutagenesis required the presence of two “UV mutagenesis” genes, umuC and umuD, along with recA. Guided by the genetics, decades of biochemical studies have defined the predicted error-prone DNA polymerase as an activated complex of these three gene products, assembled as a mutasome, pol V Mut = UmuD’2C-RecA-ATP. Here, we explore the role of the β-sliding processivity clamp on the efficiency of pol V Mut-catalyzed DNA synthesis on undamaged DNA and during translesion DNA synthesis (TLS). Primer elongation efficiencies and TLS were strongly enhanced in the presence of β. The results suggest that β may have two stabilizing roles: its canonical role in tethering the pol at a primer-3’-terminus, and a possible second role in inhibiting pol V Mut’s ATPase to reduce the rate of mutasome-DNA dissociation. The identification of umuC, umuD, and recA homologs in numerous strains of pathogenic bacteria and plasmids will ensure the long and productive continuation of the genetic and biochemical journey initiated by Radman and Witkin.


Author(s):  
Penny J. Beuning ◽  
Hannah R. Stern ◽  
Ryan J. Dilworth

2004 ◽  
Vol 384 (2) ◽  
pp. 337-348 ◽  
Author(s):  
Duane A. LEHTINEN ◽  
Fred W. PERRINO

The ε-subunit contains the catalytic site for the 3′→5′ proofreading exonuclease that functions in the DNA pol III (DNA polymerase III) core to edit nucleotides misinserted by the α-subunit DNA pol. A novel mutagenesis strategy was used to identify 23 dnaQ alleles that exhibit a mutator phenotype in vivo. Fourteen of the ε mutants were purified, and these proteins exhibited 3′→5′ exonuclease activities that ranged from 32% to 155% of the activity exhibited by the wild-type ε protein, in contrast with the 2% activity exhibited by purified MutD5 protein. DNA pol III core enzymes constituted with 11 of the 14 ε mutants exhibited an increased error rate during in vitro DNA synthesis using a forward mutation assay. Interactions of the purified ε mutants with the α- and θ-subunits were examined by gel filtration chromatography and exonuclease stimulation assays, and by measuring polymerase/exonuclease ratios to identify the catalytically active ε511 (I170T/V215A) mutant with dysfunctional proofreading in the DNA pol III core. The ε511 mutant associated tightly with the α-subunit, but the exonuclease activity of ε511 was not stimulated in the α–ε511 complex. Addition of the θ-subunit to generate the α–ε511–θ DNA pol III core partially restored stimulation of the ε511 exonuclease, indicating a role for the θ-subunit in co-ordinating the α–ε polymerase–exonuclease interaction. The α–ε511–θ DNA pol III core exhibited a 3.5-fold higher polymerase/exonuclease ratio relative to the wild-type DNA pol III core, further indicating dysfunctional proofreading in the α–ε511–θ complex. Thus the ε511 mutant has wild-type 3′→5′ exonuclease activity and associates physically with the α- and θ-subunits to generate a proofreading-defective DNA pol III enzyme.


2005 ◽  
Vol 52 (1) ◽  
pp. 139-147
Author(s):  
Michał Wrzesiński ◽  
Anetta Nowosielska ◽  
Jadwiga Nieminuszczy ◽  
Elzbieta Grzesiuk

Irradiation of organisms with UV light produces genotoxic and mutagenic lesions in DNA. Replication through these lesions (translesion DNA synthesis, TSL) in Escherichia coli requires polymerase V (Pol V) and polymerase III (Pol III) holoenzyme. However, some evidence indicates that in the absence of Pol V, and with Pol III inactivated in its proofreading activity by the mutD5 mutation, efficient TSL takes place. The aim of this work was to estimate the involvement of SOS-inducible DNA polymerases, Pol II, Pol IV and Pol V, in UV mutagenesis and in mutation frequency decline (MFD), a mechanism of repair of UV-induced damage to DNA under conditions of arrested protein synthesis. Using the argE3-->Arg(+) reversion to prototrophy system in E. coli AB1157, we found that the umuDC-encoded Pol V is the only SOS-inducible polymerase required for UV mutagenesis, since in its absence the level of Arg(+) revertants is extremely low and independent of Pol II and/or Pol IV. The low level of UV-induced Arg(+) revertants observed in the AB1157mutD5DumuDC strain indicates that under conditions of disturbed proofreading activity of Pol III and lack of Pol V, UV-induced lesions are bypassed without inducing mutations. The presented results also indicate that Pol V may provide substrates for MFD repair; moreover, we suggest that only those DNA lesions which result from umuDC-directed UV mutagenesis are subject to MFD repair.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Razieh Pourahmad Jaktaji ◽  
Sayedeh Marzieh Nourbakhsh Rezaei

Background: Ciprofloxacin induces SOS response and mutagenesis by activation of UmuD’2C (DNA polymerase V) and DinB (DNA polymerase IV) in Escherichia coli, leading to antibiotic resistance during therapy. Inactivation of DNA polymerase V can result in the inhibition of mutagenesis in E. coli. Objectives: The aim of this research was to investigate the effect of UmuC inactivation on resistance to ciprofloxacin and SOS mutagenesis in E. coli mutants. Methods: Ciprofloxacin-resistant mutants were produced in a umuC- genetic background in the presence of increasing concentrations of ciprofloxacin. The minimum inhibitory concentration of umuC-mutants was measured by broth dilution method. Alterations in the rifampin resistance-determing region of rpoB gene were assessed by PCR amplification and DNA sequencing. The expression of SOS genes was measured by quantitative real-time PCR assay. Results: Results showed that despite the induction of SOS response (overexpression of recA, dinB, and umuD genes) following exposure to ciprofloxacin in E. coliumuC mutants, resistance to ciprofloxacin and SOS mutagenesis significantly decreased. However, rifampicin-resistant clones emerged in this genetic background. One of these clones showed mutations in the rifampicin resistance-determining region of rpoB (cluster II). The low mutation frequency of E. coli might be associated with the presence and overexpression of umuD gene, which could somehow limit the activity of DinB, the location and type of mutations in the β subunit of RNA polymerase. Conclusions: In conclusion, for increasing the efficiency of ciprofloxacin against Gram-negative bacteria, use of an inhibitor of umuC, along with ciprofloxacin, would be helpful.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2805 ◽  
Author(s):  
Hannah R. Stern ◽  
Jana Sefcikova ◽  
Victoria E. Chaparro ◽  
Penny J. Beuning

DNA polymerase (pol) kappa is a Y-family translesion DNA polymerase conserved throughout all domains of life. Pol kappa is special6 ized for the ability to copy DNA containing minor groove DNA adducts, especially N2-dG adducts, as well as to extend primer termini containing DNA damage or mismatched base pairs. Pol kappa generally cannot copy DNA containing major groove modifications or UV-induced photoproducts. Pol kappa can also copy structured or non-B-form DNA, such as microsatellite DNA, common fragile sites, and DNA containing G quadruplexes. Thus, pol kappa has roles both in maintaining and compromising genomic integrity. The expression of pol kappa is altered in several different cancer types, which can lead to genome instability. In addition, many cancer-associated single-nucleotide polymorphisms have been reported in the POLK gene, some of which are associated with poor survival and altered chemotherapy response. Because of this, identifying inhibitors of pol kappa is an active area of research. This review will address these activities of pol kappa, with a focus on lesion bypass and cellular mutagenesis.


Sign in / Sign up

Export Citation Format

Share Document