scholarly journals Autophagy is a critical regulator of memory CD8+ T cell formation

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Daniel J Puleston ◽  
Hanlin Zhang ◽  
Timothy J Powell ◽  
Elina Lipina ◽  
Stuart Sims ◽  
...  

During infection, CD8+ T cells initially expand then contract, leaving a small memory pool providing long lasting immunity. While it has been described that CD8+ T cell memory formation becomes defective in old age, the cellular mechanism is largely unknown. Autophagy is a major cellular lysosomal degradation pathway of bulk material, and levels are known to fall with age. In this study, we describe a novel role for autophagy in CD8+ T cell memory formation. Mice lacking the autophagy gene Atg7 in T cells failed to establish CD8+ T cell memory to influenza and MCMV infection. Interestingly, autophagy levels were diminished in CD8+ T cells from aged mice. We could rejuvenate CD8+ T cell responses in elderly mice in an autophagy dependent manner using the compound spermidine. This study reveals a cell intrinsic explanation for poor CD8+ T cell memory in the elderly and potentially offers novel immune modulators to improve aged immunity.

2013 ◽  
Vol 210 (7) ◽  
pp. 1463-1479 ◽  
Author(s):  
Salvador Iborra ◽  
Manuel Ramos ◽  
David M. Arana ◽  
Silvia Lázaro ◽  
Francisco Aguilar ◽  
...  

Signals from the TCR that specifically contribute to effector versus memory CD8+ T cell differentiation are poorly understood. Using mice and adoptively transferred T lymphocytes lacking the small GTPase N-ras, we found that N-ras–deficient CD8+ T cells differentiate efficiently into antiviral primary effectors but have a severe defect in generating protective memory cells. This defect was rescued, although only partly, by rapamycin-mediated inhibition of mammalian target of rapamycin (mTOR) in vivo. The memory defect correlated with a marked impairment in vitro and in vivo of the antigen-mediated early induction of T-box transcription factor Eomesodermin (Eomes), whereas T-bet was unaffected. Besides N-ras, early Eomes induction in vitro required phosphoinositide 3-kinase (PI3K)–AKT but not extracellular signal-regulated kinase (ERK) activation, and it was largely insensitive to rapamycin. Consistent with N-ras coupling Eomes to T cell memory, retrovirally enforced expression of Eomes in N-ras–deficient CD8+ T cells effectively rescued their memory differentiation. Thus, our study identifies a critical role for N-ras as a TCR-proximal regulator of Eomes for early determination of the CD8+ T cell memory fate.


2012 ◽  
Vol 18 (3) ◽  
pp. 422-428 ◽  
Author(s):  
Andrew Zloza ◽  
Frederick J Kohlhapp ◽  
Gretchen E Lyons ◽  
Jason M Schenkel ◽  
Tamson V Moore ◽  
...  

Cell Reports ◽  
2016 ◽  
Vol 14 (5) ◽  
pp. 1206-1217 ◽  
Author(s):  
Lianjun Zhang ◽  
Benjamin O. Tschumi ◽  
Isabel C. Lopez-Mejia ◽  
Susanne G. Oberle ◽  
Marten Meyer ◽  
...  

2010 ◽  
Vol 30 (21) ◽  
pp. 5145-5159 ◽  
Author(s):  
Anju Singh ◽  
Anna Jatzek ◽  
Erin Hemmila Plisch ◽  
Rajini Srinivasan ◽  
John Svaren ◽  
...  

ABSTRACT Induction of potent T-cell memory is the goal of vaccinations, but the molecular mechanisms that regulate the formation of memory CD8 T cells are not well understood. Despite the recognition that controls of cellular proliferation and apoptosis govern the number of memory T cells, the cell cycle regulatory mechanisms that control these key cellular processes in CD8 T cells during an immune response are poorly defined. Here, we have identified the cyclin-dependent kinase inhibitor p27Kip1 as a critical regulator of the CD8 T-cell homeostasis at all phases of the T-cell response to an acute viral infection in mice. By acting as a timer for cell cycle exit, p27Kip1 curtailed the programmed expansion of interleukin-2-producing memory precursors and markedly limited the magnitude and quality of CD8 T-cell memory. In the absence of p27Kip1, CD8 T cells showed superior recall responses shortly after vaccination with recombinant Listeria monocytogenes. Additionally, we show that p27Kip1 constrains proliferative renewal of memory CD8 T cells, especially of the effector memory subset. These findings provide critical insights into the cell cycle regulation of CD8 T-cell homeostasis and suggest that modulation of p27Kip1 could bolster vaccine-induced T-cell memory and protective immunity.


2021 ◽  
Author(s):  
Yanping Wang ◽  
Sungyong You ◽  
Shengchen Su ◽  
Austin Yeon ◽  
Eric M. Lo ◽  
...  

SummaryCholesterol-lowering interventions are employed widely and safely to reduce risk of cardiovascular disease. Cholesterol may have complex and opposing effects on immunity. We lowered serum cholesterol to clinically relevant levels in mice and evaluated the final adaptive immune response. Mice treated with oral ezetimibe exhibited enhanced antitumor immunity against syngeneic cancers in a CD8+ lymphocyte-dependent manner, produced immunity that was transferrable through lymphocytes, and enhanced central CD8+ T cell memory. In both mice and patients undergoing prostatectomy, lowering serum cholesterol inhibited mTORC2 signaling in lymphocytes and increased infiltration of CD8+ lymphocytes into prostate tumors. Lymphocyte-specific mTORC2 knockout mice demonstrated enhanced CD8+ lymphocyte function and antitumor capacity. In a prospective clinical trial, cholesterol-lowering intervention prior to prostatectomy decreased the proliferation of normal prostate and low-grade adenocarcinomas. Here, we show that lowering serum cholesterol may be an effective strategy to decrease signaling through mTORC2 and enhance antitumor CD8+ T cell memory.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Carla A. Jaeger-Ruckstuhl ◽  
Magdalena Hinterbrandner ◽  
Sabine Höpner ◽  
Colin E. Correnti ◽  
Ursina Lüthi ◽  
...  

2006 ◽  
Vol 176 (4) ◽  
pp. 2486-2495 ◽  
Author(s):  
Qigui Yu ◽  
Feng Yun Yue ◽  
Xiao X. Gu ◽  
Herbert Schwartz ◽  
Colin M. Kovacs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document