scholarly journals N-ras couples antigen receptor signaling to Eomesodermin and to functional CD8+ T cell memory but not to effector differentiation

2013 ◽  
Vol 210 (7) ◽  
pp. 1463-1479 ◽  
Author(s):  
Salvador Iborra ◽  
Manuel Ramos ◽  
David M. Arana ◽  
Silvia Lázaro ◽  
Francisco Aguilar ◽  
...  

Signals from the TCR that specifically contribute to effector versus memory CD8+ T cell differentiation are poorly understood. Using mice and adoptively transferred T lymphocytes lacking the small GTPase N-ras, we found that N-ras–deficient CD8+ T cells differentiate efficiently into antiviral primary effectors but have a severe defect in generating protective memory cells. This defect was rescued, although only partly, by rapamycin-mediated inhibition of mammalian target of rapamycin (mTOR) in vivo. The memory defect correlated with a marked impairment in vitro and in vivo of the antigen-mediated early induction of T-box transcription factor Eomesodermin (Eomes), whereas T-bet was unaffected. Besides N-ras, early Eomes induction in vitro required phosphoinositide 3-kinase (PI3K)–AKT but not extracellular signal-regulated kinase (ERK) activation, and it was largely insensitive to rapamycin. Consistent with N-ras coupling Eomes to T cell memory, retrovirally enforced expression of Eomes in N-ras–deficient CD8+ T cells effectively rescued their memory differentiation. Thus, our study identifies a critical role for N-ras as a TCR-proximal regulator of Eomes for early determination of the CD8+ T cell memory fate.

2012 ◽  
Vol 18 (3) ◽  
pp. 422-428 ◽  
Author(s):  
Andrew Zloza ◽  
Frederick J Kohlhapp ◽  
Gretchen E Lyons ◽  
Jason M Schenkel ◽  
Tamson V Moore ◽  
...  

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Daniel J Puleston ◽  
Hanlin Zhang ◽  
Timothy J Powell ◽  
Elina Lipina ◽  
Stuart Sims ◽  
...  

During infection, CD8+ T cells initially expand then contract, leaving a small memory pool providing long lasting immunity. While it has been described that CD8+ T cell memory formation becomes defective in old age, the cellular mechanism is largely unknown. Autophagy is a major cellular lysosomal degradation pathway of bulk material, and levels are known to fall with age. In this study, we describe a novel role for autophagy in CD8+ T cell memory formation. Mice lacking the autophagy gene Atg7 in T cells failed to establish CD8+ T cell memory to influenza and MCMV infection. Interestingly, autophagy levels were diminished in CD8+ T cells from aged mice. We could rejuvenate CD8+ T cell responses in elderly mice in an autophagy dependent manner using the compound spermidine. This study reveals a cell intrinsic explanation for poor CD8+ T cell memory in the elderly and potentially offers novel immune modulators to improve aged immunity.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


2017 ◽  
Vol 214 (6) ◽  
pp. 1593-1606 ◽  
Author(s):  
Hossam A. Abdelsamed ◽  
Ardiana Moustaki ◽  
Yiping Fan ◽  
Pranay Dogra ◽  
Hazem E. Ghoneim ◽  
...  

Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell–mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (TEM), and longer-lived central memory (TCM) and stem cell memory (TSCM) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7– and IL-15–mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of TCM and TSCM memory cells resulted in phenotypic conversion into TEM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired TEM-associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells.


2010 ◽  
Vol 30 (21) ◽  
pp. 5145-5159 ◽  
Author(s):  
Anju Singh ◽  
Anna Jatzek ◽  
Erin Hemmila Plisch ◽  
Rajini Srinivasan ◽  
John Svaren ◽  
...  

ABSTRACT Induction of potent T-cell memory is the goal of vaccinations, but the molecular mechanisms that regulate the formation of memory CD8 T cells are not well understood. Despite the recognition that controls of cellular proliferation and apoptosis govern the number of memory T cells, the cell cycle regulatory mechanisms that control these key cellular processes in CD8 T cells during an immune response are poorly defined. Here, we have identified the cyclin-dependent kinase inhibitor p27Kip1 as a critical regulator of the CD8 T-cell homeostasis at all phases of the T-cell response to an acute viral infection in mice. By acting as a timer for cell cycle exit, p27Kip1 curtailed the programmed expansion of interleukin-2-producing memory precursors and markedly limited the magnitude and quality of CD8 T-cell memory. In the absence of p27Kip1, CD8 T cells showed superior recall responses shortly after vaccination with recombinant Listeria monocytogenes. Additionally, we show that p27Kip1 constrains proliferative renewal of memory CD8 T cells, especially of the effector memory subset. These findings provide critical insights into the cell cycle regulation of CD8 T-cell homeostasis and suggest that modulation of p27Kip1 could bolster vaccine-induced T-cell memory and protective immunity.


Open Biology ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 190235 ◽  
Author(s):  
Stephanie J. Crowley ◽  
Patrick T. Bruck ◽  
Md Aladdin Bhuiyan ◽  
Amelia Mitchell-Gears ◽  
Michael J. Walsh ◽  
...  

Cancer-specific mutations can lead to peptides of unique sequence presented on MHC class I to CD8 T cells. These neoantigens can be potent tumour-rejection antigens, appear to be the driving force behind responsiveness to anti-CTLA-4 and anti-PD1/L1-based therapies and have been used to develop personalized vaccines. The platform for delivering neoantigen-based vaccines has varied, and further optimization of both platform and adjuvant will be necessary to achieve scalable vaccine products that are therapeutically effective at a reasonable cost. Here, we developed a platform for testing potential CD8 T cell tumour vaccine candidates. We used a high-affinity alpaca-derived VHH against MHC class II to deliver peptides to professional antigen-presenting cells. We show in vitro and in vivo that peptides derived from the model antigen ovalbumin are better able to activate naive ovalbumin-specific CD8 T cells when conjugated to an MHC class II-specific VHH when compared with an irrelevant control VHH. We then used the VHH-peptide platform to evaluate a panel of candidate neoantigens in vivo in a mouse model of pancreatic cancer. None of the candidate neoantigens tested led to protection from tumour challenge; however, we were able to show vaccine-induced CD8 T cell responses to a melanoma self-antigen that was augmented by combination therapy with the synthetic cytokine mimetic Neo2/15.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3237-3237
Author(s):  
Carolina S. Berger ◽  
Michael Jensen ◽  
Stanley R. Riddell

Abstract The adoptive transfer of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) clones that have been isolated and expanded in vitro is a promising treatment modality for both human malignancies and infections. However, establishing immunity of sufficient magnitude and persistence for sustained efficacy is a limitation of this approach. Recent studies have identified a critical role for cytokine signaling including that mediated by IL15 in the establishment and maintenance of CD8+ T cell memory, suggesting that protocols for generating and transferring antigen-specific T cells might be improved. Interleukin-2 (IL2) is the T cell growth factor that has been widely used in vitro and in vivo for promoting T cell proliferation and persistence, but prolonged exposure of T cells to IL2 can enhance susceptibility to cell death and limit CD8+ memory T cell survival. IL15 is a novel cytokine that shares some activities with IL2 such as the induction of T cell proliferation, but exerts contrasting effects on the homeostasis of CD8+ T cell memory in experimental models. Here, we study the utility of IL15 to enhance the long-term survival and function of human and macaque antigen-specific CD8+ CTL clones in vitro. Human and macaque CD8+ CTL clones reactive against CMV were isolated by limiting dilution, expanded over 14 days in the presence of IL2 or IL15 (1–10 ng/ml), and then rested for >4 weeks in media alone and with IL2 or IL15 at 0.01–10 ng/ml. Surviving T cells were enumerated at intervals, monitored for cell surface phenotype, and assayed for cytotoxicity by chromium release assay. CTL expanded in IL2 or IL15 proliferated equivalently over 14 days with a median of 1100 and 1400 fold increase in number, displayed surface markers consistent with an effector memory phenotype (CD45RA−CD62L−CCR7−CD28−), and showed comparable cytotoxicity (n=4). However, exposure after 14 days to IL15 at doses as little as 0.05-0.1 ng/ml greatly enhanced the survival of the CD8+ CTL as determined by Annexin V staining. By contrast, cells cultured without cytokines or with IL2 declined >80% in number over 3 or 11 days, respectively. Of note, IL15 at higher doses (>0.5 ng/ml), but not IL2, efficiently promoted sustained cell growth illustrated by labeling cells with CFSE. Cells cultured with IL15 displayed 1.5-fold increased expression of antiapoptotic molecules such as Bcl-xL and Bcl-2 over those plated in IL2 (n=4), indicating IL15 mediated its effects at least in part by preventing apoptosis. Of note, the cytotoxicity of CTL rested in IL2 was markedly reduced (>60%, n=3), while the presence of IL15 permitted for sustained CTL function and expansion after restimulation. The responses of human and macaque CTL clones to IL15 were equivalent suggesting in vivo studies of T cell transfer in macaques may be predictive of results in humans. We have constructed retroviral vectors encoding intracytoplasmic truncated macaque CD34 or CD19 genes that could serve as nonimmunogenic selectable marker to track macaque T cells after transfer. Macaque T cells were efficiently transduced to express CD34t and CD19t (>50%), and enriched to high purity by immunomagnetic selection. Studies to examine the safety and utility of IL15 on the survival of adoptively transferred CTL in macaques are in progress. Collectively, our data support that novel cytokines such as IL15 may prove useful to augment the long-term survival and effector function of ex vivo expanded antigen-specific CD8+ CTL clones after transfer.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 639 ◽  
Author(s):  
Younghyun Lim ◽  
Seyoung Kim ◽  
Sehoon Kim ◽  
Dong-In Kim ◽  
Kyung Won Kang ◽  
...  

The immune-suppressive effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) on T cells have been observed via multiple in vitro and in vivo models. However, the precise mechanism that causes these effects is still undefined. In this study, we investigated whether n-3 PUFAs regulated T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions. The expansion of anti-viral CD8+ T cells that endogenously synthesize n-3 PUFAs (FAT-1) dramatically decreased upon lymphocytic choriomeningitis virus (LCMV) infection in vivo. This decrease was not caused by the considerable reduction of TCR expression or the impaired chemotactic activity of T cells. Interestingly, a highly inclined and laminated optical sheet (HILO) microscopic analysis revealed that the TCR motility was notably reduced on the surface of the FAT-1 CD8+ T cells compared to the wild type (WT) CD8+ T cells. Importantly, the adhesion strength of the FAT-1 CD8+ T cells to the peptide-MHC was significantly lower than that of the WT CD8+T cells. Consistent with this result, treatment with docosahexaenoic acid (DHA), one type of n-3 PUFA, significantly decreased CD8+ T cell adhesion to the pMHC. Collectively, our results reveal a novel mechanism through which n-3 PUFAs decrease TCR-pMHC interactions by modulating TCR mobility on CD8+ T cell surfaces.


Sign in / Sign up

Export Citation Format

Share Document