scholarly journals Reorganisation of Hoxd regulatory landscapes during the evolution of a snake-like body plan

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Isabel Guerreiro ◽  
Sandra Gitto ◽  
Ana Novoa ◽  
Julien Codourey ◽  
Thi Hanh Nguyen Huynh ◽  
...  

Within land vertebrate species, snakes display extreme variations in their body plan, characterized by the absence of limbs and an elongated morphology. Such a particular interpretation of the basic vertebrate body architecture has often been associated with changes in the function or regulation of Hox genes. Here, we use an interspecies comparative approach to investigate different regulatory aspects at the snake HoxD locus. We report that, unlike in other vertebrates, snake mesoderm-specific enhancers are mostly located within the HoxD cluster itself rather than outside. In addition, despite both the absence of limbs and an altered Hoxd gene regulation in external genitalia, the limb-associated bimodal HoxD chromatin structure is maintained at the snake locus. Finally, we show that snake and mouse orthologous enhancer sequences can display distinct expression specificities. These results show that vertebrate morphological evolution likely involved extensive reorganisation at Hox loci, yet within a generally conserved regulatory framework.

Science ◽  
2013 ◽  
Vol 340 (6137) ◽  
pp. 1234167 ◽  
Author(s):  
Guillaume Andrey ◽  
Thomas Montavon ◽  
Bénédicte Mascrez ◽  
Federico Gonzalez ◽  
Daan Noordermeer ◽  
...  

Hox genes are major determinants of the animal body plan, where they organize structures along both the trunk and appendicular axes. During mouse limb development, Hoxd genes are transcribed in two waves: early on, when the arm and forearm are specified, and later, when digits form. The transition between early and late regulations involves a functional switch between two opposite topological domains. This switch is reflected by a subset of Hoxd genes mapping centrally into the cluster, which initially interact with the telomeric domain and subsequently swing toward the centromeric domain, where they establish new contacts. This transition between independent regulatory landscapes illustrates both the modularity of the limbs and the distinct evolutionary histories of its various pieces. It also allows the formation of an intermediate area of low HOX proteins content, which develops into the wrist, the transition between our arms and our hands. This regulatory strategy accounts for collinear Hox gene regulation in land vertebrate appendages.


Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1449-1466 ◽  
Author(s):  
C.E. Nelson ◽  
B.A. Morgan ◽  
A.C. Burke ◽  
E. Laufer ◽  
E. DiMambro ◽  
...  

The vertebrate Hox genes have been shown to be important for patterning the primary and secondary axes of the developing vertebrate embryo. The function of these genes along the primary axis of the embryo has been generally interpreted in the context of positional specification and homeotic transformation of axial structures. The way in which these genes are expressed and function during the development of the secondary axes, particularly the limb, is less clear. In order to provide a reference for understanding the role of the Hox genes in limb patterning, we isolated clones of 23 Hox genes expressed during limb development, characterized their expression patterns and analyzed their regulation by the signalling centers which pattern the limb. The expression patterns of the Abd-B-related Hoxa and Hoxd genes have previously been partially characterized; however, our study reveals that these genes are expressed in patterns more dynamic and complex than generally appreciated, only transiently approximating simple, concentric, nested domains. Detailed analysis of these patterns suggests that the expression of each of the Hoxa and Hoxd genes is regulated in up to three independent phases. Each of these phases appears to be associated with the specification and patterning of one of the proximodistal segments of the limb (upper arm, lower arm and hand). Interestingly, in the last of these phases, the expression of the Hoxd genes violates the general rule of spatial and temporal colinearity of Hox gene expression with gene order along the chromosome. In contrast to the Abd-B-related Hoxa and Hoxd genes, which are expressed in both the fore and hind limbs, different sets of Hoxc genes are expressed in the two limbs. There is a correlation between the relative position of these genes along the chromosome and the axial level of the limb bud in which they are expressed. The more 3′ genes are expressed in the fore limb bud while the 5′ genes are expressed in the hind limb bud; intermediate genes are transcribed in both limbs. However, there is no clear correlation between the relative position of the genes along the chromosome and their expression domains within the limb. With the exception of Hoxc-11, which is transcribed in a posterior portion of the hind limb, Hoxc gene expression is restricted to the anterior/proximal portion of the limb bud. Importantly, comparison of the distributions of Hoxc-6 RNA and protein products reveals posttranscriptional regulation of this gene, suggesting that caution must be exercised in interpreting the functional significance of the RNA distribution of any of the vertebrate Hox genes. To understand the genesis of the complex patterns of Hox gene expression in the limb bud, we examined the propagation of Hox gene expression relative to cell proliferation. We find that shifts in Hox gene expression cannot be attributed to passive expansion due to cell proliferation. Rather, phase-specific Hox gene expression patterns appear to result from a context-dependent response of the limb mesoderm to Sonic hedgehog. Sonic hedgehog (the patterning signal from the Zone of Polarizing Activity) is known to be able to activate Hoxd gene expression in the limb. Although we find that Sonic hedgehog is capable of initiating and polarizing Hoxd gene expression during both of the latter two phases of Hox gene expression, the specific patterns induced are not determined by the signal, but depend upon the temporal context of the mesoderm receiving the signal. Misexpression of Sonic hedgehog also reveals that Hoxb-9, which is normally excluded from the posterior mesenchyme of the leg, is negatively regulated by Sonic hedgehog and that Hoxc-11, which is expressed in the posterior portion of the leg, is not affected by Sonic hedgehog and hence is not required to pattern the skeletal elements of the lower leg.


BioEssays ◽  
2003 ◽  
Vol 25 (9) ◽  
pp. 878-887 ◽  
Author(s):  
Jean S. Deutsch ◽  
Emmanu�le Mouchel-Vielh
Keyword(s):  

Author(s):  
Isabel Guerreiro ◽  
Sandra Gitto ◽  
Ana Novoa ◽  
Julien Codourey ◽  
Thi Hanh Nguyen Huynh ◽  
...  

2021 ◽  
Author(s):  
Christopher J Gonzalez ◽  
Tobias R Hildebrandt ◽  
Brigid C O'Donnell

Abstract Background: Hox genes are key regulators of appendage development in the insect body plan. The body plan of Mayfly (Ephemeroptera) nymphs differs due to the presence of evolutionarily significant abdominal appendages called gills. Despite mayflies’ basal phylogenetic position and novel morphology amongst insects, little is known of their developmental genetics. Here we present an annotated transcriptome for the mayfly Hexagenia limbata, with annotated sequences for putative Hox peptides and embryonic expression profiles for the Hox genes Antp and Ubx/abd-A. Results: Transcriptomic sequencing of early instar H. limbata nymphs yielded a high-quality assembly of 83,795 contigs, of which 22,975 were annotated against Folsomia candida, Nilaparvata lugens, Zootermopsis nevadensis and UniRef90 protein databases. Peptide annotations included eight of the ten canonical Hox genes (lab, pb, Dfd, Scr, Antp, Ubx, abd-A and Abd-B), most of which contained all functional domains and motifs conserved in insects. Expression patterns of Antp and Ubx/abd-A in H. limbata were visualized from early to late embryogenesis, and are also highly conserved with patterns reported for other non-holometabolous insects.Conclusions: We present evidence that both H. limbata Hox peptide sequences and embryonic expression patterns for Antp and Ubx/abd-A are extensively conserved with other insects. These findings suggest mayfly Antp and Ubx/abd-A play similar appendage promoting and repressing roles in the thorax and abdomen, respectively. The identified expression of Ubx and abd-A in early instar nymphs further suggests that mayfly gill development is not subject to Ubx or abd-A repression. Previous studies have shown that insect Ubx and abd-A repress appendages by inhibiting their distal structures, which can permit the development of proximal appendage types. In line with past morphology-based work, we propose that mayfly gills are proximal appendage structures, possibly homologous to the proximal appendage structures of crustaceans.


Development ◽  
2002 ◽  
Vol 129 (5) ◽  
pp. 1225-1238 ◽  
Author(s):  
Cynthia L. Hughes ◽  
Thomas C. Kaufman

The diversity of the arthropod body plan has long been a fascinating subject of study. A flurry of recent research has analyzed Hox gene expression in various arthropod groups, with hopes of gaining insight into the mechanisms that underlie their evolution. The Hox genes have been analyzed in insects, crustaceans and chelicerates. However, the expression patterns of the Hox genes have not yet been comprehensively analyzed in a myriapod. We present the expression patterns of the ten Hox genes in a centipede, Lithobius atkinsoni, and compare our results to those from studies in other arthropods. We have three major findings. First, we find that Hox gene expression is remarkably dynamic across the arthropods. The expression patterns of the Hox genes in the centipede are in many cases intermediate between those of the chelicerates and those of the insects and crustaceans, consistent with the proposed intermediate phylogenetic position of the Myriapoda. Second, we found two ‘extra’ Hox genes in the centipede compared with those in Drosophila. Based on its pattern of expression, Hox3 appears to have a typical Hox-like role in the centipede, suggesting that the novel functions of the Hox3 homologs zen and bicoid were adopted somewhere in the crustacean-insect clade. In the centipede, the expression of the gene fushi tarazu suggests that it has both a Hox-like role (as in the mite), as well as a role in segmentation (as in insects). This suggests that this dramatic change in function was achieved via a multifunctional intermediate, a condition maintained in the centipede. Last, we found that Hox expression correlates with tagmatic boundaries, consistent with the theory that changes in Hox genes had a major role in evolution of the arthropod body plan.


Reproduction ◽  
2003 ◽  
pp. 713-719 ◽  
Author(s):  
NM Rubenstein ◽  
GR Cunha ◽  
YZ Wang ◽  
KL Campbell ◽  
AJ Conley ◽  
...  

Female moles of the Old World genus Talpa display a curious suite of reproductive features that include a peniform clitoris and ovaries with a discrete interstitial gland or testis-like region (so-called 'ovotestes'). The masculinization of the female external genitalia in Talpa has accordingly been linked with secretion of androgens from the interstitial gland region of the fetal gonad. Although their ovarian morphology has received less attention, some species of New World moles also have ovaries with a pronounced interstitial gland (for example star-nosed mole, Condylura cristata), whereas females of other species do not (for example eastern mole, Scalopus aquaticus). Although it is difficult to determine the sex of both Old and New World moles, published accounts describing the external genitalia of female moles are available only for Talpa. The hypothesis that masculinization of the female external genitalia in moles is associated with the presence of an ovarian interstitial gland (OIG) was tested in the present study by using a comparative approach to determine whether these features are ever found in isolation of one another. Three genera of North American moles (Scapanus, Condylura and Neurotrichus) were studied and a peniform clitoris was found in all three species, but OIG were found in only two of three genera. The ovaries of S. latimanus and S. orarius were unremarkable, with no evidence of a discrete interstitial gland or testis-like region. Mapping these results onto recent talpid phylogenies indicates that loss of the bipolar ovarian morphology is a derived trait in Scapanus, and conclusively demonstrates that masculinization of the external genitalia in female moles can develop in the presence or absence of 'ovotestes'.


1995 ◽  
Vol 349 (1329) ◽  
pp. 313-319 ◽  

Homeobox genes encode transcription factors that carry out diverse roles during development. They are widely distributed among eukaryotes, but appear to have undergone an extensive radiation in the earliest metazoa, to generate a range of homeobox subclasses now shared between diverse metazoan phyla. The Hox genes comprise one of these subfamilies, defined as much by conserved chromosomal organization and expression as by sequence characteristics. These Hox genes act as markers of position along the antero—posterior axis of the body in nematodes, arthropods, chordates, and by implication, most other triploblastic phyla. In the arthropods this role is visualized most clearly in the control of segment identity. Exactly how Hox genes control the structure of segments is not yet understood, but their differential deployment between segments provides a model for the basis of segment diversity. Within the arthropods, distantly related taxonomic groups with very different body plans (insects, crustaceans) may share the same set of Hox genes. The expression of these Hox genes provides a new character to define the homology of different body regions. Comparisons of Hox gene deployment between insects and a branchiopod crustacean suggest a novel model for the derivation of the insect body plan.


Sign in / Sign up

Export Citation Format

Share Document