scholarly journals Uncoupling apical constriction from tissue invagination

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
SeYeon Chung ◽  
Sangjoon Kim ◽  
Deborah J Andrew

Apical constriction is a widely utilized cell shape change linked to folding, bending and invagination of polarized epithelia. It remains unclear how apical constriction is regulated spatiotemporally during tissue invagination and how this cellular process contributes to tube formation in different developmental contexts. Using Drosophila salivary gland (SG) invagination as a model, we show that regulation of folded gastrulation expression by the Fork head transcription factor is required for apicomedial accumulation of Rho kinase and non-muscle myosin II, which coordinate apical constriction. We demonstrate that neither loss of spatially coordinated apical constriction nor its complete blockage prevent internalization and tube formation, although such manipulations affect the geometry of invagination. When apical constriction is disrupted, compressing force generated by a tissue-level myosin cable contributes to SG invagination. We demonstrate that fully elongated polarized SGs can form outside the embryo, suggesting that tube formation and elongation are intrinsic properties of the SG.

2008 ◽  
Vol 19 (5) ◽  
pp. 2289-2299 ◽  
Author(s):  
Nagatoki Kinoshita ◽  
Noriaki Sasai ◽  
Kazuyo Misaki ◽  
Shigenobu Yonemura

Although Rho-GTPases are well-known regulators of cytoskeletal reorganization, their in vivo distribution and physiological functions have remained elusive. In this study, we found marked apical accumulation of Rho in developing chick embryos undergoing folding of the neural plate during neural tube formation, with similar accumulation of activated myosin II. The timing of accumulation and biochemical activation of both Rho and myosin II was coincident with the dynamics of neural tube formation. Inhibition of Rho disrupted its apical accumulation and led to defects in neural tube formation, with abnormal morphology of the neural plate. Continuous activation of Rho also altered neural tube formation. These results indicate that correct spatiotemporal regulation of Rho is essential for neural tube morphogenesis. Furthermore, we found that a key morphogenetic signaling pathway, the Wnt/PCP pathway, was implicated in the apical accumulation of Rho and regulation of cell shape in the neural plate, suggesting that this signal may be the spatiotemporal regulator of Rho in neural tube formation.


2009 ◽  
Vol 186 (1) ◽  
pp. 57-73 ◽  
Author(s):  
Jessica K. Sawyer ◽  
Nathan J. Harris ◽  
Kevin C. Slep ◽  
Ulrike Gaul ◽  
Mark Peifer

Cadherin-based adherens junctions (AJs) mediate cell adhesion and regulate cell shape change. The nectin–afadin complex also localizes to AJs and links to the cytoskeleton. Mammalian afadin has been suggested to be essential for adhesion and polarity establishment, but its mechanism of action is unclear. In contrast, Drosophila melanogaster’s afadin homologue Canoe (Cno) has suggested roles in signal transduction during morphogenesis. We completely removed Cno from embryos, testing these hypotheses. Surprisingly, Cno is not essential for AJ assembly or for AJ maintenance in many tissues. However, morphogenesis is impaired from the start. Apical constriction of mesodermal cells initiates but is not completed. The actomyosin cytoskeleton disconnects from AJs, uncoupling actomyosin constriction and cell shape change. Cno has multiple direct interactions with AJ proteins, but is not a core part of the cadherin–catenin complex. Instead, Cno localizes to AJs by a Rap1- and actin-dependent mechanism. These data suggest that Cno regulates linkage between AJs and the actin cytoskeleton during morphogenesis.


2016 ◽  
Vol 214 (5) ◽  
pp. 603-617 ◽  
Author(s):  
Frank M. Mason ◽  
Shicong Xie ◽  
Claudia G. Vasquez ◽  
Michael Tworoger ◽  
Adam C. Martin

During morphogenesis, contraction of the actomyosin cytoskeleton within individual cells drives cell shape changes that fold tissues. Coordination of cytoskeletal contractility is mediated by regulating RhoA GTPase activity. Guanine nucleotide exchange factors (GEFs) activate and GTPase-activating proteins (GAPs) inhibit RhoA activity. Most studies of tissue folding, including apical constriction, have focused on how RhoA is activated by GEFs to promote cell contractility, with little investigation as to how GAPs may be important. Here, we identify a critical role for a RhoA GAP, Cumberland GAP (C-GAP), which coordinates with a RhoA GEF, RhoGEF2, to organize spatiotemporal contractility during Drosophila melanogaster apical constriction. C-GAP spatially restricts RhoA pathway activity to a central position in the apical cortex. RhoGEF2 pulses precede myosin, and C-GAP is required for pulsation, suggesting that contractile pulses result from RhoA activity cycling. Finally, C-GAP expression level influences the transition from reversible to irreversible cell shape change, which defines the onset of tissue shape change. Our data demonstrate that RhoA activity cycling and modulating the ratio of RhoGEF2 to C-GAP are required for tissue folding.


2014 ◽  
Vol 206 (3) ◽  
pp. 435-450 ◽  
Author(s):  
Claudia G. Vasquez ◽  
Mike Tworoger ◽  
Adam C. Martin

Apical constriction is a cell shape change that promotes epithelial bending. Activation of nonmuscle myosin II (Myo-II) by kinases such as Rho-associated kinase (Rok) is important to generate contractile force during apical constriction. Cycles of Myo-II assembly and disassembly, or pulses, are associated with apical constriction during Drosophila melanogaster gastrulation. It is not understood whether Myo-II phosphoregulation organizes contractile pulses or whether pulses are important for tissue morphogenesis. Here, we show that Myo-II pulses are associated with pulses of apical Rok. Mutants that mimic Myo-II light chain phosphorylation or depletion of myosin phosphatase inhibit Myo-II contractile pulses, disrupting both actomyosin coalescence into apical foci and cycles of Myo-II assembly/disassembly. Thus, coupling dynamic Myo-II phosphorylation to upstream signals organizes contractile Myo-II pulses in both space and time. Mutants that mimic Myo-II phosphorylation undergo continuous, rather than incremental, apical constriction. These mutants fail to maintain intercellular actomyosin network connections during tissue invagination, suggesting that Myo-II pulses are required for tissue integrity during morphogenesis.


Development ◽  
1981 ◽  
Vol 61 (1) ◽  
pp. 35-49
Author(s):  
Eugenie C. Enslee ◽  
Lynn M. Riddiford

In the bug, Pyrrhocoris apterus, blastokinesis (a reversal of the position of the embryo within the egg) is seen to involve contraction of the serosa that is attached to the embryo's head. As the serosal cells change from squamous to columnar in the course of blastokinesis, a dense zone of microfilaments appears just under the apical surface. Many apical protrusions develop above this zone. After the embryo is in its final position the zone disappears and later the cells degenerate. Laterally, the serosal cells are connected by belt desmosornes, septate junctions and gap junctions. As blastokinesis progresses, more lateral surface is recruited below them from the original basal surface. Microtubules running parallel to the plasma membrane are seen near the apical microfilaments and along other surfaces of the cell. Secretory granules are evident both within serosal cells and along the apical surface, probably providing a lubricant for movement against the chorion. Yolk cells are common basal to the serosa, possibly mobilizing nutrients for it. This study of blastokinesis in Pyrrhocoris provides a dramatic example of cell shape change that is correlated with the appearance of microfilaments. In its details blastokinesis is comparable to morphogenetic events such as amphibian neural tube formation and ascidian metamorphosis.


2011 ◽  
Vol 22 (14) ◽  
pp. 2491-2508 ◽  
Author(s):  
Jessica K. Sawyer ◽  
Wangsun Choi ◽  
Kuo-Chen Jung ◽  
Li He ◽  
Nathan J. Harris ◽  
...  

Integrating individual cell movements to create tissue-level shape change is essential to building an animal. We explored mechanisms of adherens junction (AJ):cytoskeleton linkage and roles of the linkage regulator Canoe/afadin during Drosophila germband extension (GBE), a convergent-extension process elongating the body axis. We found surprising parallels between GBE and a quite different morphogenetic movement, mesoderm apical constriction. Germband cells have an apical actomyosin network undergoing cyclical contractions. These coincide with a novel cell shape change—cell extension along the anterior–posterior (AP) axis. In Canoe's absence, GBE is disrupted. The apical actomyosin network detaches from AJs at AP cell borders, reducing coordination of actomyosin contractility and cell shape change. Normal GBE requires planar polarization of AJs and the cytoskeleton. Canoe loss subtly enhances AJ planar polarity and dramatically increases planar polarity of the apical polarity proteins Bazooka/Par3 and atypical protein kinase C. Changes in Bazooka localization parallel retraction of the actomyosin network. Globally reducing AJ function does not mimic Canoe loss, but many effects are replicated by global actin disruption. Strong dose-sensitive genetic interactions between canoe and bazooka are consistent with them affecting a common process. We propose a model in which an actomyosin network linked at AP AJs by Canoe and coupled to apical polarity proteins regulates convergent extension.


2010 ◽  
Vol 341 (1) ◽  
pp. 5-19 ◽  
Author(s):  
Jacob M. Sawyer ◽  
Jessica R. Harrell ◽  
Gidi Shemer ◽  
Jessica Sullivan-Brown ◽  
Minna Roh-Johnson ◽  
...  

Development ◽  
2020 ◽  
Vol 147 (24) ◽  
pp. dev186403 ◽  
Author(s):  
Christian Dahmann ◽  
Anne-Kathrin Classen

ABSTRACTOne of the central questions in developmental biology concerns how cells become organized into tissues of the correct size, shape and polarity. This organization depends on the implementation of a cell's genetic information to give rise to specific and coordinated cell behaviors, including cell division and cell shape change. The execution of these cell behaviors requires the active generation of mechanical forces. However, understanding how force generation is controlled and, importantly, coordinated among many cells in a tissue was little explored until the early 2000s. Suzanne Eaton was one of the pioneers in this emerging field of developmental tissue mechanics. As we briefly review here, she connected the quantitative analysis of cell behaviors with genetic assays, and integrated physical modeling with measurements of mechanical forces to reveal fundamental insights into epithelial morphogenesis at cell- and tissue-level scales.


Sign in / Sign up

Export Citation Format

Share Document