scholarly journals Decision letter: Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1 C1C2BMUN

2016 ◽  
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Junjie Xu ◽  
Marcial Camacho ◽  
Yibin Xu ◽  
Victoria Esser ◽  
Xiaoxia Liu ◽  
...  

Munc13–1 acts as a master regulator of neurotransmitter release, mediating docking-priming of synaptic vesicles and diverse presynaptic plasticity processes. It is unclear how the functions of the multiple domains of Munc13–1 are coordinated. The crystal structure of a Munc13–1 fragment including its C1, C2B and MUN domains (C1C2BMUN) reveals a 19.5 nm-long multi-helical structure with the C1 and C2B domains packed at one end. The similar orientations of the respective diacyglycerol- and Ca2+-binding sites of the C1 and C2B domains suggest that the two domains cooperate in plasma-membrane binding and that activation of Munc13–1 by Ca2+ and diacylglycerol during short-term presynaptic plasticity are closely interrelated. Electrophysiological experiments in mouse neurons support the functional importance of the domain interfaces observed in C1C2BMUN. The structure imposes key constraints for models of neurotransmitter release and suggests that Munc13–1 bridges the vesicle and plasma membranes from the periphery of the membrane-membrane interface.


2019 ◽  
Vol 20 (9) ◽  
pp. 2217 ◽  
Author(s):  
Sumiko Mochida

Presynaptic Ca2+ entry occurs through voltage-gated Ca2+ (CaV) channels which are activated by membrane depolarization. Depolarization accompanies neuronal firing and elevation of Ca2+ triggers neurotransmitter release from synaptic vesicles. For synchronization of efficient neurotransmitter release, synaptic vesicles are targeted by presynaptic Ca2+ channels forming a large signaling complex in the active zone. The presynaptic CaV2 channel gene family (comprising CaV2.1, CaV2.2, and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are responsible for channel modulation by interacting with regulatory proteins. This article overviews modulation of the activity of CaV2.1 and CaV2.2 channels in the control of synaptic strength and presynaptic plasticity.


2020 ◽  
Vol 22 (1) ◽  
pp. 327
Author(s):  
Sumiko Mochida

An action potential (AP) triggers neurotransmitter release from synaptic vesicles (SVs) docking to a specialized release site of presynaptic plasma membrane, the active zone (AZ). The AP simultaneously controls the release site replenishment with SV for sustainable synaptic transmission in response to incoming neuronal signals. Although many studies have suggested that the replenishment time is relatively slow, recent studies exploring high speed resolution have revealed SV dynamics with milliseconds timescale after an AP. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an AP. This review summarizes how millisecond Ca2+ dynamics activate multiple protein cascades for control of the release site replenishment with release-ready SVs that underlie presynaptic short-term plasticity.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Marcial Camacho ◽  
Bradley Quade ◽  
Thorsten Trimbuch ◽  
Junjie Xu ◽  
Levent Sari ◽  
...  

Munc13-1 plays a central role in neurotransmitter release through its conserved C-terminal region, which includes a diacyglycerol (DAG)-binding C1 domain, a Ca2+/PIP2-binding C2B domain, a MUN domain and a C2C domain. Munc13-1 was proposed to bridge synaptic vesicles to the plasma membrane through distinct interactions of the C­1C2B region with the plasma membrane: i) one involving a polybasic face that is expected to yield a perpendicular orientation of Munc13-1 and hinder release; and ii) another involving the DAG-Ca2+-PIP2-binding face that is predicted to result in a slanted orientation and facilitate release. Here we have tested this model and investigated the role of the C­1C2B region in neurotransmitter release. We find that K603E or R769E point mutations in the polybasic face severely impair Ca2+-independent liposome bridging and fusion in in vitro reconstitution assays, and synaptic vesicle priming in primary murine hippocampal cultures. A K720E mutation in the polybasic face and a K706E mutation in the C2B domain Ca2+-binding loops have milder effects in reconstitution assays and do not affect vesicle priming, but enhance or impair Ca2+-evoked release, respectively. The phenotypes caused by combining these mutations are dominated by the K603E and R769E mutations. Our results show that the C1-C2B region of Munc13-1 plays a central role in vesicle priming and support the notion that two distinct faces of this region control neurotransmitter release and short-term presynaptic plasticity.


2021 ◽  
Author(s):  
Josep Rizo ◽  
Marcial Camacho ◽  
Bradley Quade ◽  
Thorsten Trimbuch ◽  
Junjie Xu ◽  
...  

Munc13-1 plays a central role in neurotransmitter release through its conserved C-terminal region, which includes a diacyglycerol (DAG)-binding C1 domain, a Ca2+/PIP2-binding C2B domain, a MUN domain and a C2C domain. Munc13-1 was proposed to bridge synaptic vesicles to the plasma membrane in two different orientations mediated by distinct interactions of the C1C2B region with the plasma membrane: i) one involving a polybasic face that yields a perpendicular orientation of Munc13-1 and hinders release; and ii) another involving the DAG-Ca2+-PIP2-binding face that induces a slanted orientation and facilitates release. Here we have tested this model and investigated the role of the C1C2B region in neurotransmitter release. We find that K603E or R769E point mutations in the polybasic face severely impair synaptic vesicle priming in primary murine hippocampal cultures, and Ca2+-independent liposome bridging and fusion in in vitro reconstitution assays. A K720E mutation in the polybasic face and a K706E mutation in the C2B domain Ca2+-binding loops have milder effects in reconstitution assays and do not affect vesicle priming, but enhance or impair Ca2+-evoked release, respectively. The phenotypes caused by combining these mutations are dominated by the K603E and R769E mutations. Our results show that the C1-C2B region of Munc13-1 plays a central role in vesicle priming and support the notion that re-orientation of Munc13-1 controls neurotransmitter release and short-term presynaptic plasticity.


2021 ◽  
Author(s):  
Aaron Stahl ◽  
Nathaniel C Noyes ◽  
Tamara Boto ◽  
Miao Jing ◽  
Jianzhi Zeng ◽  
...  

Anatomical and physiological compartmentalization of neurons is a mechanism to increase the computational capacity of a circuit, and a major question is what role axonal compartmentalization plays. Axonal compartmentalization may enable localized, presynaptic plasticity to alter neuronal output in a flexible, experience-dependent manner. Here we show that olfactory learning generates compartmentalized, bidirectional plasticity of acetylcholine release that varies across the longitudinal compartments of Drosophila mushroom body (MB) axons. The directionality of the learning-induced plasticity depends on the valence of the learning event (aversive vs. appetitive), varies linearly across proximal to distal compartments following appetitive conditioning, and correlates with learning-induced changes in downstream mushroom body output neurons (MBONs) that modulate behavioral action selection. Potentiation of acetylcholine release was dependent on the CaV2.1 calcium channel subunit cacophony. In addition, contrast between the positive conditioned stimulus and other odors required the inositol triphosphate receptor (IP3R), which was required to maintain responsivity to odors in untrained conditions. Downstream from the mushroom body, a set of MBONs that receive their input from the γ3 MB compartment were required for normal appetitive learning, suggesting that they represent a key node through which discriminative effects influence appetitive memory and decision-making. These data demonstrate that learning drives valence correlated, compartmentalized, bidirectional potentiation and depression of synaptic neurotransmitter release, which rely on distinct mechanisms and are distributed across axonal compartments in a learning circuit.


2018 ◽  
Author(s):  
Mathias A. Böhme ◽  
Anthony W. McCarthy ◽  
Andreas T. Grasskamp ◽  
Christine B. Beuschel ◽  
Pragya Goel ◽  
...  

AbstractSynaptic transmission is mediated by neurotransmitter release at presynaptic active zones (AZs) followed by postsynaptic neurotransmitter detection. Plastic changes in transmission maintain functionality during perturbations and enable memory formation. Postsynaptic plasticity targets neurotransmitter receptors, but presynaptic plasticity mechanisms directly regulating the neurotransmitter release apparatus remain largely enigmatic. Here we describe that AZs consist of nano-modular release site units and identify a molecular sequence adding more modules within minutes of plasticity induction. This requires cognate transport machinery and a discrete subset of AZ scaffold proteins. Structural remodeling is not required for the immediate potentiation of neurotransmitter release, but rather necessary to sustain this potentiation over longer timescales. Finally, mutations in Unc13 that disrupt homeostatic plasticity at the neuromuscular junction also impair shot-term memory when central neurons are targeted, suggesting that both forms of plasticity operate via Unc13. Together, while immediate synaptic potentiation capitalizes on available material, it triggers the coincident incorporation of modular release sites to consolidate stable synapse function.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Thorsten Trimbuch ◽  
Junjie Xu ◽  
David Flaherty ◽  
Diana R Tomchick ◽  
Josep Rizo ◽  
...  

Complexins play activating and inhibitory functions in neurotransmitter release. The complexin accessory helix inhibits release and was proposed to insert into SNARE complexes to prevent their full assembly. This model was supported by ‘superclamp’ and ‘poor-clamp’ mutations that enhanced or decreased the complexin-I inhibitory activity in cell–cell fusion assays, and by the crystal structure of a superclamp mutant bound to a synaptobrevin-truncated SNARE complex. NMR studies now show that the complexin-I accessory helix does not insert into synaptobrevin-truncated SNARE complexes in solution, and electrophysiological data reveal that superclamp mutants have slightly stimulatory or no effects on neurotransmitter release, whereas a poor-clamp mutant inhibits release. Importantly, increasing or decreasing the negative charge of the complexin-I accessory helix inhibits or stimulates release, respectively. These results suggest a new model whereby the complexin accessory helix inhibits release through electrostatic (and perhaps steric) repulsion enabled by its location between the vesicle and plasma membranes.


Sign in / Sign up

Export Citation Format

Share Document