scholarly journals Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1 C1C2BMUN

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Junjie Xu ◽  
Marcial Camacho ◽  
Yibin Xu ◽  
Victoria Esser ◽  
Xiaoxia Liu ◽  
...  

Munc13–1 acts as a master regulator of neurotransmitter release, mediating docking-priming of synaptic vesicles and diverse presynaptic plasticity processes. It is unclear how the functions of the multiple domains of Munc13–1 are coordinated. The crystal structure of a Munc13–1 fragment including its C1, C2B and MUN domains (C1C2BMUN) reveals a 19.5 nm-long multi-helical structure with the C1 and C2B domains packed at one end. The similar orientations of the respective diacyglycerol- and Ca2+-binding sites of the C1 and C2B domains suggest that the two domains cooperate in plasma-membrane binding and that activation of Munc13–1 by Ca2+ and diacylglycerol during short-term presynaptic plasticity are closely interrelated. Electrophysiological experiments in mouse neurons support the functional importance of the domain interfaces observed in C1C2BMUN. The structure imposes key constraints for models of neurotransmitter release and suggests that Munc13–1 bridges the vesicle and plasma membranes from the periphery of the membrane-membrane interface.

2020 ◽  
Vol 22 (1) ◽  
pp. 327
Author(s):  
Sumiko Mochida

An action potential (AP) triggers neurotransmitter release from synaptic vesicles (SVs) docking to a specialized release site of presynaptic plasma membrane, the active zone (AZ). The AP simultaneously controls the release site replenishment with SV for sustainable synaptic transmission in response to incoming neuronal signals. Although many studies have suggested that the replenishment time is relatively slow, recent studies exploring high speed resolution have revealed SV dynamics with milliseconds timescale after an AP. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an AP. This review summarizes how millisecond Ca2+ dynamics activate multiple protein cascades for control of the release site replenishment with release-ready SVs that underlie presynaptic short-term plasticity.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Marcial Camacho ◽  
Bradley Quade ◽  
Thorsten Trimbuch ◽  
Junjie Xu ◽  
Levent Sari ◽  
...  

Munc13-1 plays a central role in neurotransmitter release through its conserved C-terminal region, which includes a diacyglycerol (DAG)-binding C1 domain, a Ca2+/PIP2-binding C2B domain, a MUN domain and a C2C domain. Munc13-1 was proposed to bridge synaptic vesicles to the plasma membrane through distinct interactions of the C­1C2B region with the plasma membrane: i) one involving a polybasic face that is expected to yield a perpendicular orientation of Munc13-1 and hinder release; and ii) another involving the DAG-Ca2+-PIP2-binding face that is predicted to result in a slanted orientation and facilitate release. Here we have tested this model and investigated the role of the C­1C2B region in neurotransmitter release. We find that K603E or R769E point mutations in the polybasic face severely impair Ca2+-independent liposome bridging and fusion in in vitro reconstitution assays, and synaptic vesicle priming in primary murine hippocampal cultures. A K720E mutation in the polybasic face and a K706E mutation in the C2B domain Ca2+-binding loops have milder effects in reconstitution assays and do not affect vesicle priming, but enhance or impair Ca2+-evoked release, respectively. The phenotypes caused by combining these mutations are dominated by the K603E and R769E mutations. Our results show that the C1-C2B region of Munc13-1 plays a central role in vesicle priming and support the notion that two distinct faces of this region control neurotransmitter release and short-term presynaptic plasticity.


2019 ◽  
Author(s):  
S.B. Nyenhuis ◽  
A. Thapa ◽  
D. S. Cafiso

AbstractSynaptotagmin 1 acts as the Ca2+-sensor for synchronous neurotransmitter release; however, the mechanism by which it functions is not understood and is presently a topic of considerable interest. Here we describe measurements on full-length membrane reconstituted synaptotagmin 1 using site-directed spin labeling where we characterize the linker region as well as the cis (vesicle membrane) and trans (cytoplasmic membrane) binding of its two C2 domains. In the full-length protein, the C2A domain does not undergo membrane insertion in the absence of Ca2+; however, the C2B domain will bind to and penetrate in trans to a membrane containing phosphatidylinositol 4,5 bisphosphate (PIP2), even if phosphatidylserine (PS) is present in the cis membrane. In the presence of Ca2+, the Ca2+-binding loops of C2A and C2B both insert into the membrane interface; moreover, C2A preferentially inserts into PS containing bilayers and will bind in a cis configuration to membranes containing PS even if a PIP2 membrane is presented in trans. The data are consistent with a bridging activity for Syt1 where the two domains bind to opposing vesicle and plasma membranes. The failure of C2A to bind membranes in the absence of Ca2+ and the long unstructured segment linking C2A to the vesicle membrane indicates that synaptotagmin 1 could act to significantly shorten the vesicle-plasma membrane distance with increasing levels of Ca2+.


2019 ◽  
Vol 20 (9) ◽  
pp. 2217 ◽  
Author(s):  
Sumiko Mochida

Presynaptic Ca2+ entry occurs through voltage-gated Ca2+ (CaV) channels which are activated by membrane depolarization. Depolarization accompanies neuronal firing and elevation of Ca2+ triggers neurotransmitter release from synaptic vesicles. For synchronization of efficient neurotransmitter release, synaptic vesicles are targeted by presynaptic Ca2+ channels forming a large signaling complex in the active zone. The presynaptic CaV2 channel gene family (comprising CaV2.1, CaV2.2, and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are responsible for channel modulation by interacting with regulatory proteins. This article overviews modulation of the activity of CaV2.1 and CaV2.2 channels in the control of synaptic strength and presynaptic plasticity.


2021 ◽  
Author(s):  
Josep Rizo ◽  
Levent Sari ◽  
Yife Qi ◽  
Wonpil Im ◽  
Milo M Lin

Synaptic vesicles are primed into a state that is ready for fast neurotransmitter release upon Ca2+-binding to synaptotagmin-1. This state likely includes trans-SNARE complexes between the vesicle and plasma membranes that are bound to synaptotagmin-1 and complexins. However, the nature of this state and the steps leading to membrane fusion are unclear, in part because of the difficulty of studying this dynamic process experimentally. To shed light into these questions, we performed all-atom molecular dynamics simulations of systems containing trans-SNARE complexes between two flat bilayers or a vesicle and a flat bilayer with or without fragments of synaptotagmin-1 and/or complexin-1. Our results help visualize potential states of the release machinery en route to fusion, and suggest mechanistic features that may control the speed of release. In particular, the simulations suggest that the primed state contains almost fully assembled trans-SNARE complexes bound to the synaptotagmin-1 C2B domain and complexin-1 in a spring-loaded configuration where interactions of the C2B domain with the plasma membrane orient complexin-1 toward the vesicle, avoiding premature membrane merger but keeping the system ready for fast fusion upon Ca2+ influx.


2021 ◽  
Author(s):  
Josep Rizo ◽  
Marcial Camacho ◽  
Bradley Quade ◽  
Thorsten Trimbuch ◽  
Junjie Xu ◽  
...  

Munc13-1 plays a central role in neurotransmitter release through its conserved C-terminal region, which includes a diacyglycerol (DAG)-binding C1 domain, a Ca2+/PIP2-binding C2B domain, a MUN domain and a C2C domain. Munc13-1 was proposed to bridge synaptic vesicles to the plasma membrane in two different orientations mediated by distinct interactions of the C1C2B region with the plasma membrane: i) one involving a polybasic face that yields a perpendicular orientation of Munc13-1 and hinders release; and ii) another involving the DAG-Ca2+-PIP2-binding face that induces a slanted orientation and facilitates release. Here we have tested this model and investigated the role of the C1C2B region in neurotransmitter release. We find that K603E or R769E point mutations in the polybasic face severely impair synaptic vesicle priming in primary murine hippocampal cultures, and Ca2+-independent liposome bridging and fusion in in vitro reconstitution assays. A K720E mutation in the polybasic face and a K706E mutation in the C2B domain Ca2+-binding loops have milder effects in reconstitution assays and do not affect vesicle priming, but enhance or impair Ca2+-evoked release, respectively. The phenotypes caused by combining these mutations are dominated by the K603E and R769E mutations. Our results show that the C1-C2B region of Munc13-1 plays a central role in vesicle priming and support the notion that re-orientation of Munc13-1 controls neurotransmitter release and short-term presynaptic plasticity.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Xiaoxia Liu ◽  
Alpay Burak Seven ◽  
Marcial Camacho ◽  
Victoria Esser ◽  
Junjie Xu ◽  
...  

Neurotransmitter release requires SNARE complexes to bring membranes together, NSF-SNAPs to recycle the SNAREs, Munc18-1 and Munc13s to orchestrate SNARE complex assembly, and Synaptotagmin-1 to trigger fast Ca2+-dependent membrane fusion. However, it is unclear whether Munc13s function upstream and/or downstream of SNARE complex assembly, and how the actions of their multiple domains are integrated. Reconstitution, liposome-clustering and electrophysiological experiments now reveal a functional synergy between the C1, C2B and C2C domains of Munc13-1, indicating that these domains help bridging the vesicle and plasma membranes to facilitate stimulation of SNARE complex assembly by the Munc13-1 MUN domain. Our reconstitution data also suggest that Munc18-1, Munc13-1, NSF, αSNAP and the SNAREs are critical to form a ‘primed’ state that does not fuse but is ready for fast fusion upon Ca2+ influx. Overall, our results support a model whereby the multiple domains of Munc13s cooperate to coordinate synaptic vesicle docking, priming and fusion.


1988 ◽  
Vol 107 (6) ◽  
pp. 2717-2727 ◽  
Author(s):  
F Valtorta ◽  
R Jahn ◽  
R Fesce ◽  
P Greengard ◽  
B Ceccarelli

Recycling of synaptophysin (p38), a synaptic vesicle integral membrane protein, was studied by the use of antisera raised against the protein purified from frog brain. When frog cutaneous pectoris muscles were fixed at rest, a bright, specific immunofluorescent signal was observed in nerve-terminal regions only if their plasma membranes had been previously permeabilized. When muscles were fixed after they had been treated for 1 h with a low dose of alpha-latrotoxin in Ca2+-free medium, an equally intense fluorescence could be observed without previous permeabilization. Under this condition, alpha-latrotoxin depletes nerve terminals of their quantal store of acetylcholine and of synaptic vesicles. These results indicate that fusion of synaptic vesicles leads to the exposure of intravesicular antigenic determinants of synaptophysin on the outer surface of the axolemma, and provide direct support for the vesicle hypothesis of neurotransmitter release. After 1 h treatment with the same dose of alpha-latrotoxin in the presence of 1.8 mM extracellular Ca2+, immunofluorescent images were obtained only after permeabilization with detergents. Under this condition, the vesicle population was maintained by an active process of recycling and more than two times the initial store of quanta were secreted. Thus, despite the active turnover of synaptic vesicles and of quanta of neurotransmitter, no extensive intermixing occurs between components of the vesicle and presynaptic plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document