scholarly journals The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Hamish W King ◽  
Robert J Klose

Pioneer transcription factors recognise and bind their target sequences in inaccessible chromatin to establish new transcriptional networks throughout development and cellular reprogramming. During this process, pioneer factors establish an accessible chromatin state to facilitate additional transcription factor binding, yet it remains unclear how different pioneer factors achieve this. Here, we discover that the pluripotency-associated pioneer factor OCT4 binds chromatin to shape accessibility, transcription factor co-binding, and regulatory element function in mouse embryonic stem cells. Chromatin accessibility at OCT4-bound sites requires the chromatin remodeller BRG1, which is recruited to these sites by OCT4 to support additional transcription factor binding and expression of the pluripotency-associated transcriptome. Furthermore, the requirement for BRG1 in shaping OCT4 binding reflects how these target sites are used during cellular reprogramming and early mouse development. Together this reveals a distinct requirement for a chromatin remodeller in promoting the activity of the pioneer factor OCT4 and regulating the pluripotency network.

2020 ◽  
Vol 118 (8) ◽  
pp. 2015-2026 ◽  
Author(s):  
Matan Goldshtein ◽  
Meir Mellul ◽  
Gai Deutch ◽  
Masahiko Imashimizu ◽  
Koh Takeuchi ◽  
...  

Author(s):  
Gurdeep Singh ◽  
Shanelle Mullany ◽  
Sakthi D Moorthy ◽  
Richard Zhang ◽  
Tahmid Mehdi ◽  
...  

ABSTRACTTranscriptional enhancers are critical for development, phenotype evolution and often mutated in disease contexts; however, even in well-studied cell types, the sequence code conferring enhancer activity remains unknown. We found genomic regions with conserved binding of multiple transcription factors in mouse and human embryonic stem cells (ESCs) contain on average 12.6 conserved transcription factor binding sites (TFBS). These TFBS are a diverse repertoire of 70 different sequences representing the binding sites of both known and novel ESC regulators. Remarkably, using a diverse set of TFBS from this repertoire was sufficient to construct short synthetic enhancers with activity comparable to native enhancers. Site directed mutagenesis of conserved TFBS in endogenous enhancers or TFBS deletion from synthetic sequences revealed a requirement for more than ten different TFBS. Furthermore, specific TFBS, including the OCT4:SOX2 co-motif, are dispensable, despite co-binding the OCT4, SOX2 and NANOG master regulators of pluripotency. These findings reveal a TFBS diversity threshold overrides the need for optimized regulatory grammar and individual TFBS that bind specific master regulators.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0150715 ◽  
Author(s):  
Hyojung Jeon ◽  
Tsuyoshi Waku ◽  
Takuya Azami ◽  
Le Tran Phuc Khoa ◽  
Jun Yanagisawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document