scholarly journals Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jake F Watson ◽  
Hinze Ho ◽  
Ingo H Greger

AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and are selectively recruited during activity-dependent plasticity to increase synaptic strength. A prerequisite for faithful signal transmission is the positioning and clustering of AMPARs at postsynaptic sites. The mechanisms underlying this positioning have largely been ascribed to the receptor cytoplasmic C-termini and to AMPAR-associated auxiliary subunits, both interacting with the postsynaptic scaffold. Here, using mouse organotypic hippocampal slices, we show that the extracellular AMPAR N-terminal domain (NTD), which projects midway into the synaptic cleft, plays a fundamental role in this process. This highly sequence-diverse domain mediates synaptic anchoring in a subunit-selective manner. Receptors lacking the NTD exhibit increased mobility in synapses, depress synaptic transmission and are unable to sustain long-term potentiation (LTP). Thus, synaptic transmission and the expression of LTP are dependent upon an AMPAR anchoring mechanism that is driven by the NTD.

2012 ◽  
Vol 107 (4) ◽  
pp. 1058-1066 ◽  
Author(s):  
Peng Zhang ◽  
John E. Lisman

CaMKII and PSD-95 are the two most abundant postsynaptic proteins in the postsynaptic density (PSD). Overexpression of either can dramatically increase synaptic strength and saturate long-term potentiation (LTP). To do so, CaMKII must be activated, but the same is not true for PSD-95; expressing wild-type PSD-95 is sufficient. This raises the question of whether PSD-95's effects are simply an equilibrium process [increasing the number of AMPA receptor (AMPAR) slots] or whether activity is somehow involved. To examine this question, we blocked activity in cultured hippocampal slices with TTX and found that the effects of PSD-95 overexpression were greatly reduced. We next studied the type of receptors involved. The effects of PSD-95 were prevented by antagonists of group I metabotropic glutamate receptors (mGluRs) but not by antagonists of ionotropic glutamate receptors. The inhibition of PSD-95-induced strengthening was not simply a result of inhibition of PSD-95 synthesis. To understand the mechanisms involved, we tested the role of CaMKII. Overexpression of a CaMKII inhibitor, CN19, greatly reduced the effect of PSD-95. We conclude that PSD-95 cannot itself increase synaptic strength simply by increasing the number of AMPAR slots; rather, PSD-95's effects on synaptic strength require an activity-dependent process involving mGluR and CaMKII.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yuanyuan Xu ◽  
Mike T. Lin ◽  
Xiang-ming Zha

Abstract Increased neural activities reduced pH at the synaptic cleft and interstitial spaces. Recent studies have shown that protons function as a neurotransmitter. However, it remains unclear whether protons signal through a metabotropic receptor to regulate synaptic function. Here, we showed that GPR68, a proton-sensitive GPCR, exhibited wide expression in the hippocampus, with higher expression observed in CA3 pyramidal neurons and dentate granule cells. In organotypic hippocampal slice neurons, ectopically expressed GPR68-GFP was present in dendrites, dendritic spines, and axons. Recordings in hippocampal slices isolated from GPR68−/− mice showed a reduced fiber volley at the Schaffer collateral-CA1 synapses, a reduced long-term potentiation (LTP), but unaltered paired-pulse ratio. In a step-through passive avoidance test, GPR68−/− mice exhibited reduced avoidance to the dark chamber. These findings showed that GPR68 contributes to hippocampal LTP and aversive fear memory.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiandong Sun ◽  
Yan Liu ◽  
Guoqi Zhu ◽  
Caleb Cato ◽  
Xiaoning Hao ◽  
...  

Abstract The ubiquitin ligase, Ube3a, plays important roles in brain development and functions, since its deficiency results in Angelman Syndrome (AS) while its over-expression increases the risk for autism. We previously showed that the lack of Ube3a-mediated ubiquitination of the Ca2+-activated small conductance potassium channel, SK2, contributes to impairment of synaptic plasticity and learning in AS mice. Synaptic SK2 levels are also regulated by protein kinase A (PKA), which phosphorylates SK2 in its C-terminal domain, facilitating its endocytosis. Here, we report that PKA activation restores theta burst stimulation (TBS)-induced long-term potentiation (LTP) in hippocampal slices from AS mice by enhancing SK2 internalization. While TBS-induced SK2 endocytosis is facilitated by PKA activation, SK2 recycling to synaptic membranes after TBS is inhibited by Ube3a. Molecular and cellular studies confirmed that phosphorylation of SK2 in the C-terminal domain increases its ubiquitination and endocytosis. Finally, PKA activation increases SK2 phosphorylation and ubiquitination in Ube3a-overexpressing mice. Our results indicate that, although both Ube3a-mediated ubiquitination and PKA-induced phosphorylation reduce synaptic SK2 levels, phosphorylation is mainly involved in TBS-induced endocytosis, while ubiquitination predominantly inhibits SK2 recycling. Understanding the complex interactions between PKA and Ube3a in the regulation of SK2 synaptic levels might provide new platforms for developing treatments for AS and various forms of autism.


2001 ◽  
Vol 86 (5) ◽  
pp. 2597-2604 ◽  
Author(s):  
Yang Li ◽  
Christopher J. Hough ◽  
Sang Won Suh ◽  
John M. Sarvey ◽  
Christopher J. Frederickson

Zn2+ is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn2+ is released from presynaptic boutons, traverses the synaptic cleft, and enters postsynaptic neurons. However, these events have not been directly observed or characterized. Here we show, using microfluorescence imaging in rat hippocampal slices, that brief trains of electrical stimulation of mossy fibers caused immediate release of Zn2+ from synaptic terminals into the extracellular microenvironment. Release was induced across a broad range of stimulus intensities and frequencies, including those likely to induce long-term potentiation. The amount of Zn2+ release was dependent on stimulation frequency (1–200 Hz) and intensity. Release of Zn2+ required sodium-dependent action potentials and was dependent on extracellular Ca2+. Once released, Zn2+ crosses the synaptic cleft and enters postsynaptic neurons, producing increases in intracellular Zn2+ concentration. These results indicate that, like a neurotransmitter, Zn2+ is stored in synaptic vesicles and is released into the synaptic cleft. However, unlike conventional transmitters, it also enters postsynaptic neurons, where it may have manifold physiological functions as an intracellular second messenger.


2021 ◽  
Author(s):  
Karl F Foley ◽  
Daniel Barnett ◽  
Deborah A Cory-Slechta ◽  
Houhui Xia

Background: Arsenic is a well-established carcinogen known to increase all-cause mortality, but its effects on the central nervous system are less well understood. Recent epidemiological studies suggest that early life exposure to arsenic is associated with learning deficits and behavioral changes, and increased arsenic exposure continues to affect an estimated 200 million individuals worldwide. Previous studies on arsenic exposure and synaptic function have demonstrated a decrease in synaptic transmission and long-term potentiation in adult rodents, but have relied on in vitro or extended exposure in adulthood. Therefore, little is known about the effect of arsenic exposure in development. Objective: Here, we studied the effects of gestational and early developmental arsenic exposure in juvenile mice. Specifically, our objective was to investigate the impact of arsenic exposure on synaptic transmission and plasticity in the hippocampus. Methods: C57BL/6 females were exposed to arsenic (0, 50ppb, 36ppm) in their drinking water two weeks prior to mating and continued to be exposed to arsenic throughout gestation and after parturition. We then performed field recordings in acute hippocampal slices from the juvenile offspring prior to weaning (P17-P23). In this paradigm, the juvenile mice are only exposed to arsenic in utero and via the mothers milk. Results: High (36ppm) and relatively low (50ppb) arsenic exposure both lead to decreased basal synaptic transmission in the hippocampus of juvenile mice. There was a mild decrease in paired-pulse facilitation in juvenile mice exposed to high, but not low, arsenic, suggesting the alterations in synaptic transmission are primarily post-synaptic. Finally, high developmental arsenic exposure led to a significant increase in long-term potentiation. Discussion: These results suggest that indirect, ecologically-relevant arsenic exposure in early development impacts hippocampal synaptic transmission and plasticity that could underlie learning deficits reported in epidemiological studies.


1999 ◽  
Vol 6 (3) ◽  
pp. 267-275 ◽  
Author(s):  
Long Ma ◽  
Gerald Reis ◽  
Luis F. Parada ◽  
Erin M. Schuman

Neurotrophic factors, including BDNF and NT-3, have been implicated in the regulation of synaptic transmission and plasticity. Previous attempts to analyze synaptic transmission and plasticity in mice lacking the NT-3 gene have been hampered by the early death of the NT-3 homozygous knockout animals. We have bypassed this problem by examining synaptic transmission in mice in which the NT-3 gene is deleted in neurons later in development, by crossing animals expressing the CRE recombinase driven by the synapsin I promoter to animals in which the NT-3 gene is floxed. We conducted blind field potential recordings at the Schaffer collateral–CA1 synapse in hippocampal slices from homozygous knockout and wild-type mice. We examined the following indices of synaptic transmission: (1) input-output relationship; (2) paired-pulse facilitation; (3) post-tetanic potentiation; and (4) long-term potentiation: induced by two different protocols: (a) two trains of 100-Hz stimulation and (b) theta burst stimulation. We found no difference between the knockout and wild-type mice in any of the above measurements. These results suggest that neuronal NT-3 does not play an essential role in normal synaptic transmission and some forms of plasticity in the mouse hippocampus.


Sign in / Sign up

Export Citation Format

Share Document