scholarly journals GPR68 deletion impairs hippocampal long-term potentiation and passive avoidance behavior

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yuanyuan Xu ◽  
Mike T. Lin ◽  
Xiang-ming Zha

Abstract Increased neural activities reduced pH at the synaptic cleft and interstitial spaces. Recent studies have shown that protons function as a neurotransmitter. However, it remains unclear whether protons signal through a metabotropic receptor to regulate synaptic function. Here, we showed that GPR68, a proton-sensitive GPCR, exhibited wide expression in the hippocampus, with higher expression observed in CA3 pyramidal neurons and dentate granule cells. In organotypic hippocampal slice neurons, ectopically expressed GPR68-GFP was present in dendrites, dendritic spines, and axons. Recordings in hippocampal slices isolated from GPR68−/− mice showed a reduced fiber volley at the Schaffer collateral-CA1 synapses, a reduced long-term potentiation (LTP), but unaltered paired-pulse ratio. In a step-through passive avoidance test, GPR68−/− mice exhibited reduced avoidance to the dark chamber. These findings showed that GPR68 contributes to hippocampal LTP and aversive fear memory.

2001 ◽  
Vol 86 (5) ◽  
pp. 2597-2604 ◽  
Author(s):  
Yang Li ◽  
Christopher J. Hough ◽  
Sang Won Suh ◽  
John M. Sarvey ◽  
Christopher J. Frederickson

Zn2+ is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn2+ is released from presynaptic boutons, traverses the synaptic cleft, and enters postsynaptic neurons. However, these events have not been directly observed or characterized. Here we show, using microfluorescence imaging in rat hippocampal slices, that brief trains of electrical stimulation of mossy fibers caused immediate release of Zn2+ from synaptic terminals into the extracellular microenvironment. Release was induced across a broad range of stimulus intensities and frequencies, including those likely to induce long-term potentiation. The amount of Zn2+ release was dependent on stimulation frequency (1–200 Hz) and intensity. Release of Zn2+ required sodium-dependent action potentials and was dependent on extracellular Ca2+. Once released, Zn2+ crosses the synaptic cleft and enters postsynaptic neurons, producing increases in intracellular Zn2+ concentration. These results indicate that, like a neurotransmitter, Zn2+ is stored in synaptic vesicles and is released into the synaptic cleft. However, unlike conventional transmitters, it also enters postsynaptic neurons, where it may have manifold physiological functions as an intracellular second messenger.


2021 ◽  
Author(s):  
Karl F Foley ◽  
Daniel Barnett ◽  
Deborah A Cory-Slechta ◽  
Houhui Xia

Background: Arsenic is a well-established carcinogen known to increase all-cause mortality, but its effects on the central nervous system are less well understood. Recent epidemiological studies suggest that early life exposure to arsenic is associated with learning deficits and behavioral changes, and increased arsenic exposure continues to affect an estimated 200 million individuals worldwide. Previous studies on arsenic exposure and synaptic function have demonstrated a decrease in synaptic transmission and long-term potentiation in adult rodents, but have relied on in vitro or extended exposure in adulthood. Therefore, little is known about the effect of arsenic exposure in development. Objective: Here, we studied the effects of gestational and early developmental arsenic exposure in juvenile mice. Specifically, our objective was to investigate the impact of arsenic exposure on synaptic transmission and plasticity in the hippocampus. Methods: C57BL/6 females were exposed to arsenic (0, 50ppb, 36ppm) in their drinking water two weeks prior to mating and continued to be exposed to arsenic throughout gestation and after parturition. We then performed field recordings in acute hippocampal slices from the juvenile offspring prior to weaning (P17-P23). In this paradigm, the juvenile mice are only exposed to arsenic in utero and via the mothers milk. Results: High (36ppm) and relatively low (50ppb) arsenic exposure both lead to decreased basal synaptic transmission in the hippocampus of juvenile mice. There was a mild decrease in paired-pulse facilitation in juvenile mice exposed to high, but not low, arsenic, suggesting the alterations in synaptic transmission are primarily post-synaptic. Finally, high developmental arsenic exposure led to a significant increase in long-term potentiation. Discussion: These results suggest that indirect, ecologically-relevant arsenic exposure in early development impacts hippocampal synaptic transmission and plasticity that could underlie learning deficits reported in epidemiological studies.


1999 ◽  
Vol 81 (1) ◽  
pp. 174-183 ◽  
Author(s):  
S. Tekkök ◽  
I. Medina ◽  
K. Krnjević

Tekkök, S., I. Medina, and K. Krnjević. Intraneuronal [Ca2+] changes induced by 2-deoxy-d-glucose in rat hippocampal slices. J. Neurophysiol. 81: 174–183, 1999. Temporary replacement of glucose by 2-deoxyglucose (2-DG; but not sucrose) is followed by long-term potentiation of CA1 synaptic transmission (2-DG LTP), which is Ca2+-dependent and is prevented by dantrolene or N-methyl-d-aspartate (NMDA) antagonists. To clarify the mechanism of action of 2-DG, we monitored [Ca2+]i while replacing glucose with 2-DG or sucrose. In slices (from Wistar rats) kept submerged at 30°C, pyramidal neurons were loaded with [Ca2+]-sensitive fluo-3 or Fura Red. The fluorescence was measured with a confocal microscope. Bath applications of 10 mM 2-DG (replacing glucose for 15 ± 0.38 min, means ± SE) led to a rapid but reversible rise in fluo-3 fluorescence (or drop of Fura Red fluorescence); the peak increase of fluo-3 fluorescence (Δ F/ F 0), measured near the end of 2-DG applications, was by 245 ± 50% ( n = 32). Isosmolar sucrose (for 15–40 min) had a smaller but significant effect (Δ F/ F 0 = 94 ± 14%, n = 10). The 2-DG–induced Δ F/ F 0 was greatly reduced (to 35 ± 15%, n = 16) by d,l-aminophosphono-valerate (50–100 μM) and abolished by 10 μM dantrolene (−4.0 ± 2.9%, n = 11). A substantial, although smaller effect, of 2-DG persisted in Ca2+-free 1 mM ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid (EGTA) medium. Two adenosine antagonists, which do not prevent 2-DG LTP, were also tested; 2-DG–induced Δ F/ F 0 (fluo-3) was not affected by the A1 antagonist 8-cyclopentyl-3,7-dihydro-1,3-dipropyl-1H-purine-2,6-dione (DPCPX 50 nM; 287 ± 38%; n = 20), but it was abolished by the A1/A2 antagonist 8-SPT; 25 ± 29%, n = 19). These observations suggest that 2-DG releases glutamate and adenosine and that the rise in [Ca2+] may be triggered by a synergistic action of glutamate (acting via NMDA receptors) and adenosine (acting via A2b receptors) resulting in Ca2+ release from a dantrolene-sensitive store. The discrepant effects of sucrose and 8-SPT on Δ F/ F 0, on the one hand, and 2-DG LTP, on the other, support other evidence that increases in postsynaptic [Ca2+]i are not essential for 2-DG LTP.


1988 ◽  
Vol 66 (6) ◽  
pp. 841-844 ◽  
Author(s):  
B. R. Sastry ◽  
J. W. Goh ◽  
P. B. Y. May ◽  
S. S. Chirwa

In guinea pig hippocampal slices, stimulation of stratum radiatum during depolarization (with intracellular current injections) of nonspiking cells (presumed to be glia) in the apical dendritic area of CA1 pyramidal neurons resulted in a subsequent long-term potentiation of intracellularly recorded excitatory postsynaptic potentials as well as extracellularly recorded population spikes in the CA1 area. Tetanic stimulation of stratum radiatum resulted in a subsequent prolonged depolarization of the presumed glial cells, and this depolarization was smaller when the tetanus was given during the presence of 2-amino-5-phosphonovalerate or when the slices were exposed to Ca2+-free medium containing Mn2+ and Mg2+. These results suggest that glial depolarization is involved as one of the steps in generating long-term potentiation.


2008 ◽  
Vol 295 (5) ◽  
pp. R1563-R1571 ◽  
Author(s):  
Germaine C. Lowe ◽  
Giamal N. Luheshi ◽  
Sylvain Williams

Prenatal exposure to infection is known to affect brain development and has been linked to increased risk for schizophrenia. The goal of this study was to investigate whether maternal infection and associated fever near term disrupts synaptic transmission in the hippocampus of the offspring. We used LPS to mimic bacterial infection and trigger the maternal inflammatory response in near-term rats. LPS was administered to rats on embryonic days 15 and 16 and hippocampal synaptic transmission was evaluated in the offspring on postnatal days 20–25. Only offspring from rats that showed a fever in response to LPS were tested. Schaffer collateral-evoked field excitatory postsynaptic potentials (fEPSPs) and fiber volleys in CA1 of hippocampal slices appeared smaller in offspring from the LPS group compared with controls, but, when the fEPSPs were normalized to the amplitude of fiber volleys, they were larger in the LPS group. In addition, intrinsic excitability of CA1 pyramidal neurons was heightened, as antidromic field responses in the LPS group were greater than those from control. Short-, but not long-term plasticity was impaired since paired-pulse facilitation of the fEPSP was attenuated in the LPS group, whereas no differences in long-term potentiation were noted. These results suggest that LPS-induced inflammation during pregnancy produces in the offspring a reduction in presynaptic input to CA1 with compensatory enhancements in postsynaptic glutamatergic response and pyramidal cell excitability. Neurodevelopmental disruption triggered by prenatal infection can have profound effects on hippocampal synaptic transmission, likely contributing to the memory and cognitive deficits observed in schizophrenia.


1995 ◽  
Vol 74 (6) ◽  
pp. 2763-2766 ◽  
Author(s):  
S. Tekkok ◽  
K. Krnjevic

1. Temporary suppression of glycolysis by 2-deoxy-D-glucose (2-DG)-long enough to abolish CA1 population spikes (PSs) and reduce field excitatory postsynaptic potentials (EPSPs) by two-thirds-is followed by a sustained rebound of EPSPs and PSs (both up by 70-150%). 2. Post 2-DG long-term potentiation (2-DG-LTP) is prevented by block of N-methyl-D-aspartate (NMDA) receptors (NMDARs). Though 2-DG-LTP is normally expressed by other receptors, in presence of picrotoxin 2-DG causes similar LTP of NMDAR-mediated EPSPs. 3. Stimulation at 1 s-1 fully depotentiates 2-DG-LTP. 4. Unlike tetanic LTP, 2-DG-LTP is not pathway-specific, is not occluded by a preceding tetanic LTP (or vice versa) and is insensitive to block of NO synthesis. 5. Hypoglycemic states may have long-lasting after-effects on cerebral synaptic function.


1996 ◽  
Vol 76 (3) ◽  
pp. 2097-2101 ◽  
Author(s):  
P. K. Stanton ◽  
A. T. Gage

1. Extracellular bath application of the selective Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor KN-62 to hippocampal slices in vitro blocked the induction of long-term depression (LTD) by low-frequency Schaffer collateral stimulation (1 Hz/15 min) of the same concentration as has been shown previously to prevent induction of long-term potentiation (LTP) at these synapses. 2. In contrast, postsynaptic intracellular infusion of KN-62 into single CA1 pyramidal neurons did not prevent induction of LTD, although it was quite effective in blocking LTP. 3. We conclude that there is a presynaptic CaMKII that must be activated to induce LTD, whereas postsynaptic CaMKII stimulation is needed to evoke LTP. 4. Bath application of KN-62 also blocked depotentiation by low-frequency stimuli of previously induced LTP, suggesting that induction of depotentiation and de novo LTD may require the same CaMKII-dependent mechanisms.


1998 ◽  
Vol 18 (3) ◽  
pp. 288-296 ◽  
Author(s):  
Kensuke Kawai ◽  
Tadayoshi Nakagomi ◽  
Takaaki Kirino ◽  
Akira Tamura ◽  
Nobufumi Kawai

Preconditioning with sublethal ischemia induces tolerance to subsequent lethal ischemia in neurons. We investigated electrophysiologic aspects of the ischemic tolerance phenomenon in the gerbil hippocampus. Gerbils were subjected to 2 minutes of forebrain ischemia (preconditioning ischemia). Some of them were subjected to a subsequent 5 minutes of forebrain ischemia 2 to 3 days after the preconditioning ischemia (double ischemia). Hippocampal slices were prepared from these gerbils subjected to the preconditioning or double ischemia, and field excitatory postsynaptic potentials were recorded from CA1 pyramidal neurons. Capacity for long-term potentiation triggered by tetanic stimulation (tetanic LTP) was transiently inhibited 1 to 2 days after the double ischemia but then recovered. Latency of anoxic depolarization was not significantly different between slices from preconditioned gerbils and those from sham-operated gerbils when these slices were subjected to in vitro anoxia. Postanoxic potentiation of N-methyl-D-aspartate (NMDA) receptor-mediated transmission (anoxic LTP) was inhibited in slices from gerbils 2 to 3 days after the preconditioning ischemia, whereas it was observed in slices from sham-operated gerbils and gerbils 9 days after the preconditioning ischemia. These results suggest that protection by induced tolerance is (1) not only morphologic but also functional, and (2) expressed in inhibiting postischemic overactivation of NMDA receptor-mediated synaptic responses.


Sign in / Sign up

Export Citation Format

Share Document