scholarly journals Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Amina A Kinkhabwala ◽  
Yi Gu ◽  
Dmitriy Aronov ◽  
David W Tank

During spatial navigation, animals use self-motion to estimate positions through path integration. However, estimation errors accumulate over time and it is unclear how they are corrected. Here we report a new cell class (‘cue cell’) encoding visual cues that could be used to correct errors in path integration in mouse medial entorhinal cortex (MEC). During virtual navigation, individual cue cells exhibited firing fields only near visual cues and their population response formed sequences repeated at each cue. These cells consistently responded to cues across multiple environments. On a track with cues on left and right sides, most cue cells only responded to cues on one side. During navigation in a real arena, they showed spatially stable activity and accounted for 32% of unidentified, spatially stable MEC cells. These cue cell properties demonstrate that the MEC contains a code representing spatial landmarks, which could be important for error correction during path integration.

2018 ◽  
Author(s):  
Amina A. Kinkhabwala ◽  
Yi Gu ◽  
Dmitriy Aronov ◽  
David W. Tank

AbstractDuring spatial navigation, animals use self-motion to estimate positions through path integration. However, estimation errors accumulate over time and it is unclear how they are corrected. Here we report a new cell class (“cue cell”) in mouse medial entorhinal cortex (MEC) that encoded visual cue information that could be used to correct errors in path integration. Cue cells accounted for a large fraction of unidentified MEC cells. They exhibited firing fields only near visual cues during virtual navigation and spatially stable activity during navigation in a real arena. Cue cells’ responses occurred in sequences repeated at each cue and were likely driven by visual inputs. In layers 2/3 of the MEC, cue cells formed clusters. Anatomically adjacent cue cells responded similarly to cues. These cue cell properties demonstrate that the MEC circuits contain a code representing spatial landmarks that could play a significant role in error correction during path integration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin S. Mallory ◽  
Kiah Hardcastle ◽  
Malcolm G. Campbell ◽  
Alexander Attinger ◽  
Isabel I. C. Low ◽  
...  

AbstractNeural circuits generate representations of the external world from multiple information streams. The navigation system provides an exceptional lens through which we may gain insights about how such computations are implemented. Neural circuits in the medial temporal lobe construct a map-like representation of space that supports navigation. This computation integrates multiple sensory cues, and, in addition, is thought to require cues related to the individual’s movement through the environment. Here, we identify multiple self-motion signals, related to the position and velocity of the head and eyes, encoded by neurons in a key node of the navigation circuitry of mice, the medial entorhinal cortex (MEC). The representation of these signals is highly integrated with other cues in individual neurons. Such information could be used to compute the allocentric location of landmarks from visual cues and to generate internal representations of space.


2014 ◽  
Vol 369 (1635) ◽  
pp. 20130369 ◽  
Author(s):  
James J. Knierim ◽  
Joshua P. Neunuebel ◽  
Sachin S. Deshmukh

The hippocampus receives its major cortical input from the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). It is commonly believed that the MEC provides spatial input to the hippocampus, whereas the LEC provides non-spatial input. We review new data which suggest that this simple dichotomy between ‘where’ versus ‘what’ needs revision. We propose a refinement of this model, which is more complex than the simple spatial–non-spatial dichotomy. MEC is proposed to be involved in path integration computations based on a global frame of reference, primarily using internally generated, self-motion cues and external input about environmental boundaries and scenes; it provides the hippocampus with a coordinate system that underlies the spatial context of an experience. LEC is proposed to process information about individual items and locations based on a local frame of reference, primarily using external sensory input; it provides the hippocampus with information about the content of an experience.


2011 ◽  
Vol 105 (6) ◽  
pp. 2989-3001 ◽  
Author(s):  
Ryan M. Yoder ◽  
Benjamin J. Clark ◽  
Joel E. Brown ◽  
Mignon V. Lamia ◽  
Stephane Valerio ◽  
...  

Successful navigation requires a constantly updated neural representation of directional heading, which is conveyed by head direction (HD) cells. The HD signal is predominantly controlled by visual landmarks, but when familiar landmarks are unavailable, self-motion cues are able to control the HD signal via path integration. Previous studies of the relationship between HD cell activity and path integration have been limited to two or more arenas located in the same room, a drawback for interpretation because the same visual cues may have been perceptible across arenas. To address this issue, we tested the relationship between HD cell activity and path integration by recording HD cells while rats navigated within a 14-unit T-maze and in a multiroom maze that consisted of unique arenas that were located in different rooms but connected by a passageway. In the 14-unit T-maze, the HD signal remained relatively stable between the start and goal boxes, with the preferred firing directions usually shifting <45° during maze traversal. In the multiroom maze in light, the preferred firing directions also remained relatively constant between rooms, but with greater variability than in the 14-unit maze. In darkness, HD cell preferred firing directions showed marginally more variability between rooms than in the lighted condition. Overall, the results indicate that self-motion cues are capable of maintaining the HD cell signal in the absence of familiar visual cues, although there are limits to its accuracy. In addition, visual information, even when unfamiliar, can increase the precision of directional perception.


2014 ◽  
Vol 369 (1635) ◽  
pp. 20120520 ◽  
Author(s):  
Christoph Schmidt-Hieber ◽  
Michael Häusser

Neurons in the medial entorhinal cortex fire action potentials at regular spatial intervals, creating a striking grid-like pattern of spike rates spanning the whole environment of a navigating animal. This remarkable spatial code may represent a neural map for path integration. Recent advances using patch-clamp recordings from entorhinal cortex neurons in vitro and in vivo have revealed how the microcircuitry in the medial entorhinal cortex may contribute to grid cell firing patterns, and how grid cells may transform synaptic inputs into spike output during firing field crossings. These new findings provide key insights into the ingredients necessary to build a grid cell.


2018 ◽  
Vol 30 (10) ◽  
pp. 2691-2725 ◽  
Author(s):  
Nicolai Waniek

Grid cells of the rodent entorhinal cortex are essential for spatial navigation. Although their function is commonly believed to be either path integration or localization, the origin or purpose of their hexagonal firing fields remains disputed. Here they are proposed to arise as an optimal encoding of transitions in sequences. First, storage requirements for transitions in general episodic sequences are examined using propositional logic and graph theory. Subsequently, transitions in complete metric spaces are considered under the assumption of an ideal sampling of an input space. It is shown that memory capacity of neurons that have to encode multiple feasible spatial transitions is maximized by a hexagonal pattern. Grid cells are proposed to encode spatial transitions in spatiotemporal sequences, with the entorhinal-hippocampal loop forming a multitransition system.


Sign in / Sign up

Export Citation Format

Share Document