scholarly journals Author response: Cold-inducible RNA-binding protein (CIRBP) adjusts clock-gene expression and REM-sleep recovery following sleep deprivation

Author(s):  
Marieke MB Hoekstra ◽  
Yann Emmenegger ◽  
Jeffrey Hubbard ◽  
Paul Franken
2018 ◽  
Author(s):  
Marieke MB Hoekstra ◽  
Yann Emmenegger ◽  
Paul Franken

AbstractSleep depriving mice affects clock gene expression, suggesting that these genes partake in sleep homeostasis. The mechanisms linking wakefulness to clock gene expression are, however, not well understood. We propose CIRBP because its rhythmic expression is i) sleep-wake driven and ii) necessary for high-amplitude clock gene expression in vitro. We therefore expect Cirbp knock-out (KO) mice to exhibit attenuated sleep-deprivation (SD) induced changes in clock gene expression, and consequently to differ in their sleep homeostatic regulation. Lack of CIRBP indeed blunted the SD-incurred changes in cortical expression of the clock gene Rev-erbα whereas it amplified the changes in Per2 and Clock. Concerning sleep homeostasis, KO mice accrued only half the extra REM sleep wild-type (WT) littermates obtained during recovery. Unexpectedly, KO mice were more active during lights-off which was accompanied by an acceleration of theta oscillations. Thus, CIRBP adjusts cortical clock gene expression after SD and expedites REM sleep recovery.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Marieke MB Hoekstra ◽  
Yann Emmenegger ◽  
Jeffrey Hubbard ◽  
Paul Franken

Sleep depriving mice affects clock-gene expression, suggesting that these genes contribute to sleep homeostasis. The mechanisms linking extended wakefulness to clock-gene expression are, however, not well understood. We propose CIRBP to play a role because its rhythmic expression is i) sleep-wake driven and ii) necessary for high-amplitude clock-gene expression in vitro. We therefore expect Cirbp knock-out (KO) mice to exhibit attenuated sleep-deprivation-induced changes in clock-gene expression, and consequently to differ in their sleep homeostatic regulation. Lack of CIRBP indeed blunted the sleep-deprivation incurred changes in cortical expression of Nr1d1, whereas it amplified the changes in Per2 and Clock. Concerning sleep homeostasis, KO mice accrued only half the extra REM sleep wild-type (WT) littermates obtained during recovery. Unexpectedly, KO mice were more active during lights-off which was accompanied with faster theta oscillations compared to WT mice. Thus, CIRBP adjusts cortical clock-gene expression after sleep deprivation and expedites REM-sleep recovery.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 552
Author(s):  
Jasmine Harley ◽  
Benjamin E. Clarke ◽  
Rickie Patani

RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 361
Author(s):  
Myeongwoo Jung ◽  
Eun-Kyung Lee

HuD (also known as ELAVL4) is an RNA–binding protein belonging to the human antigen (Hu) family that regulates stability, translation, splicing, and adenylation of target mRNAs. Unlike ubiquitously distributed HuR, HuD is only expressed in certain types of tissues, mainly in neuronal systems. Numerous studies have shown that HuD plays essential roles in neuronal development, differentiation, neurogenesis, dendritic maturation, neural plasticity, and synaptic transmission by regulating the metabolism of target mRNAs. However, growing evidence suggests that HuD also functions as a pivotal regulator of gene expression in non–neuronal systems and its malfunction is implicated in disease pathogenesis. Comprehensive knowledge of HuD expression, abundance, molecular targets, and regulatory mechanisms will broaden our understanding of its role as a versatile regulator of gene expression, thus enabling novel treatments for diseases with aberrant HuD expression. This review focuses on recent advances investigating the emerging role of HuD, its molecular mechanisms of target gene regulation, and its disease relevance in both neuronal and non–neuronal systems.


2018 ◽  
Vol 154 (6) ◽  
pp. S-585
Author(s):  
Sarah F. Andres ◽  
Kathy N. Williams ◽  
Kathryn E. Hamilton ◽  
Rei Mizuno ◽  
Jeff Headd ◽  
...  

2020 ◽  
Vol 295 (42) ◽  
pp. 14291-14304
Author(s):  
Kathrin Bajak ◽  
Kevin Leiss ◽  
Christine Clayton ◽  
Esteban Erben

In Trypanosoma brucei and related kinetoplastids, gene expression regulation occurs mostly posttranscriptionally. Consequently, RNA-binding proteins play a critical role in the regulation of mRNA and protein abundance. Yet, the roles of many RNA-binding proteins are not understood. Our previous research identified the RNA-binding protein ZC3H5 as possibly involved in gene repression, but its role in controlling gene expression was unknown. We here show that ZC3H5 is an essential cytoplasmic RNA-binding protein. RNAi targeting ZC3H5 causes accumulation of precytokinetic cells followed by rapid cell death. Affinity purification and pairwise yeast two-hybrid analysis suggest that ZC3H5 forms a complex with three other proteins, encoded by genes Tb927.11.4900, Tb927.8.1500, and Tb927.7.3040. RNA immunoprecipitation revealed that ZC3H5 is preferentially associated with poorly translated, low-stability mRNAs, the 5′-untranslated regions and coding regions of which are enriched in the motif (U/A)UAG(U/A). As previously found in high-throughput analyses, artificial tethering of ZC3H5 to a reporter mRNA or other complex components repressed reporter expression. However, depletion of ZC3H5 in vivo caused only very minor decreases in a few targets, marked increases in the abundances of very stable mRNAs, an increase in monosomes at the expense of large polysomes, and appearance of “halfmer” disomes containing two 80S subunits and one 40S subunit. We speculate that the ZC3H5 complex might be implicated in quality control during the translation of suboptimal open reading frames.


Sign in / Sign up

Export Citation Format

Share Document