scholarly journals Selectivity to approaching motion in retinal inputs to the dorsal visual pathway

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Todd R Appleby ◽  
Michael B Manookin

To efficiently navigate through the environment and avoid potential threats, an animal must quickly detect the motion of approaching objects. Current models of primate vision place the origins of this complex computation in the visual cortex. Here, we report that detection of approaching motion begins in the retina. Several ganglion cell types, the retinal output neurons, show selectivity to approaching motion. Synaptic current recordings from these cells further reveal that this preference for approaching motion arises in the interplay between presynaptic excitatory and inhibitory circuit elements. These findings demonstrate how excitatory and inhibitory circuits interact to mediate an ethologically relevant neural function. Moreover, the elementary computations that detect approaching motion begin early in the visual stream of primates.

2009 ◽  
Vol 106 (37) ◽  
pp. 15996-16001 ◽  
Author(s):  
Christopher L. Striemer ◽  
Craig S. Chapman ◽  
Melvyn A. Goodale

When we reach toward objects, we easily avoid potential obstacles located in the workspace. Previous studies suggest that obstacle avoidance relies on mechanisms in the dorsal visual stream in the posterior parietal cortex. One fundamental question that remains unanswered is where the visual inputs to these dorsal-stream mechanisms are coming from. Here, we provide compelling evidence that these mechanisms can operate in “real-time” without direct input from primary visual cortex (V1). In our first experiment, we used a reaching task to demonstrate that an individual with a dense left visual field hemianopia after damage to V1 remained strikingly sensitive to the position of unseen static obstacles placed in his blind field. Importantly, in a second experiment, we showed that his sensitivity to the same obstacles in his blind field was abolished when a short 2-s delay (without vision) was introduced before reach onset. These findings have far-reaching implications, not only for our understanding of the time constraints under which different visual pathways operate, but also in relation to how these seemingly “primitive” subcortical visual pathways can control complex everyday behavior without recourse to conscious vision.


Author(s):  
Sigrid Hegna Ingvaldsen ◽  
Tora Sund Morken ◽  
Dordi Austeng ◽  
Olaf Dammann

AbstractResearch on retinopathy of prematurity (ROP) focuses mainly on the abnormal vascularization patterns that are directly visible for ophthalmologists. However, recent findings indicate that children born prematurely also exhibit changes in the retinal cellular architecture and along the dorsal visual stream, such as structural changes between and within cortical areas. Moreover, perinatal sustained systemic inflammation (SSI) is associated with an increased risk for ROP and the visual deficits that follow. In this paper, we propose that ROP might just be the tip of an iceberg we call visuopathy of prematurity (VOP). The VOP paradigm comprises abnormal vascularization of the retina, alterations in retinal cellular architecture, choroidal degeneration, and abnormalities in the visual pathway, including cortical areas. Furthermore, VOP itself might influence the developmental trajectories of cerebral structures and functions deemed responsible for visual processing, thereby explaining visual deficits among children born preterm.


2020 ◽  
Author(s):  
Yang-Sun Hwang ◽  
Catherine Maclachlan ◽  
Jérôme Blanc ◽  
Anaëlle Dubois ◽  
Carl C H Petersen ◽  
...  

Abstract Synapses are the fundamental elements of the brain’s complicated neural networks. Although the ultrastructure of synapses has been extensively studied, the difference in how synaptic inputs are organized onto distinct neuronal types is not yet fully understood. Here, we examined the cell-type-specific ultrastructure of proximal processes from the soma of parvalbumin-positive (PV+) and somatostatin-positive (SST+) GABAergic neurons in comparison with a pyramidal neuron in the mouse primary visual cortex (V1), using serial block-face scanning electron microscopy. Interestingly, each type of neuron organizes excitatory and inhibitory synapses in a unique way. First, we found that a subset of SST+ neurons are spiny, having spines on both soma and dendrites. Each of those spines has a highly complicated structure that has up to eight synaptic inputs. Next, the PV+ and SST+ neurons receive more robust excitatory inputs to their perisoma than does the pyramidal neuron. Notably, excitatory synapses on GABAergic neurons were often multiple-synapse boutons, making another synapse on distal dendrites. On the other hand, inhibitory synapses near the soma were often single-targeting multiple boutons. Collectively, our data demonstrate that synaptic inputs near the soma are differentially organized across cell types and form a network that balances inhibition and excitation in the V1.


2003 ◽  
Vol 89 (5) ◽  
pp. 2854-2867 ◽  
Author(s):  
Joshua C. Brumberg ◽  
Farid Hamzei-Sichani ◽  
Rafael Yuste

Layer VI is the origin of the massive feedback connection from the cortex to the thalamus, yet its complement of cell types and their connections is poorly understood. The physiological and morphological properties of corticofugal neurons of layer VI of mouse primary visual cortex were investigated in slices loaded with the Ca2+indicator fura-2AM. To identify corticofugal neurons, electrical stimulation of the white matter (WM) was done in conjunction with calcium imaging to detect neurons that responded with changes in intracellular Ca2+ concentrations in response to the stimulation. Subsequent whole cell recordings confirmed that they discharged antidromic action potentials after WM stimulation. Antidromically activated neurons were more excitable and had different spiking properties than neighboring nonantidromic neurons, although both groups had similar input resistances. Furthermore, antidromic neurons possessed narrower action potentials and smaller afterhyperpolarizations. Additionally, three-dimensional reconstructions indicated that antidromically activated neurons had a distinct morphology with longer apical dendrites and fewer nonprimary dendrites than nonantidromic cells. To identify the antidromic neurons, rhodamine microspheres were injected into the dorsal lateral geniculate nucleus of the thalamus and allowed to retrogradely transport back to the somata of the layer VI cortico-geniculate neurons. Physiological and anatomical analysis indicated that most antidromic neurons were likely to be cortico-geniculate neurons. Our results show that cortico-thalamic neurons represent a specific functional and morphological class of layer VI neurons.


2013 ◽  
Vol 31 (2) ◽  
pp. 189-195 ◽  
Author(s):  
Youping Xiao

AbstractThe short-wavelength-sensitive (S) cones play an important role in color vision of primates, and may also contribute to the coding of other visual features, such as luminance and motion. The color signals carried by the S cones and other cone types are largely separated in the subcortical visual pathway. Studies on nonhuman primates or humans have suggested that these signals are combined in the striate cortex (V1) following a substantial amplification of the S-cone signals in the same area. In addition to reviewing these studies, this review describes the circuitry in V1 that may underlie the processing of the S-cone signals and the dynamics of this processing. It also relates the interaction between various cone signals in V1 to the results of some psychophysical and physiological studies on color perception, which leads to a discussion of a previous model, in which color perception is produced by a multistage processing of the cone signals. Finally, I discuss the processing of the S-cone signals in the extrastriate area V2.


1998 ◽  
Vol 78 (2) ◽  
pp. 467-485 ◽  
Author(s):  
CHARLES D. GILBERT

Gilbert, Charles D. Adult Cortical Dynamics. Physiol. Rev. 78: 467–485, 1998. — There are many influences on our perception of local features. What we see is not strictly a reflection of the physical characteristics of a scene but instead is highly dependent on the processes by which our brain attempts to interpret the scene. As a result, our percepts are shaped by the context within which local features are presented, by our previous visual experiences, operating over a wide range of time scales, and by our expectation of what is before us. The substrate for these influences is likely to be found in the lateral interactions operating within individual areas of the cerebral cortex and in the feedback from higher to lower order cortical areas. Even at early stages in the visual pathway, cells are far more flexible in their functional properties than previously thought. It had long been assumed that cells in primary visual cortex had fixed properties, passing along the product of a stereotyped operation to the next stage in the visual pathway. Any plasticity dependent on visual experience was thought to be restricted to a period early in the life of the animal, the critical period. Furthermore, the assembly of contours and surfaces into unified percepts was assumed to take place at high levels in the visual pathway, whereas the receptive fields of cells in primary visual cortex represented very small windows on the visual scene. These concepts of spatial integration and plasticity have been radically modified in the past few years. The emerging view is that even at the earliest stages in the cortical processing of visual information, cells are highly mutable in their functional properties and are capable of integrating information over a much larger part of visual space than originally believed.


Author(s):  
Gordon M. Shepherd ◽  
Michele Migliore ◽  
Francesco Cavarretta

The olfactory bulb is the site of the first synaptic processing of the olfactory input from the nose. It is present in all vertebrates (except cetaceans) and a the analogous antennal lobe in most invertebrates. With its sharply demarcated cell types and histological layers, and some well-studied synaptic interactions, it is one of the first and clearest examples of the microcircuit concept in the central nervous system. The olfactory bulb microcircuit receives the information in the sensory domain and transforms it into information in the neural domain. Traditionally, it has been considered analogous to the retina in processing its sensory input, but that has been replaced by the view that it is more similar to the thalamus or primary visual cortex in processing its multidimensional input. This chapter describes the main synaptic connections and functional operations and how they provide the output to the olfactory cortex


2008 ◽  
Vol 99 (1) ◽  
pp. 367-372 ◽  
Author(s):  
Thang Duong ◽  
Ralph D. Freeman

The firing rates of neurons in the central visual pathway vary with stimulus strength, but not necessarily in a linear manner. In the contrast domain, the neural response function for cells in the primary visual cortex is characterized by expansive and compressive nonlinearities at low and high contrasts, respectively. A compressive nonlinearity at high contrast is also found for early visual pathway neurons in the lateral geniculate nucleus (LGN). This mechanism affects processing in the visual cortex. A fundamentally related issue is the possibility of an expansive nonlinearity at low contrast in LGN. To examine this possibility, we have obtained contrast–response data for a population of LGN neurons. We find for most cells that the best-fit function requires an expansive component. Additionally, we have measured the responses of LGN neurons to m-sequence white noise and examined the static relationship between a linear prediction and actual spike rate. We find that this static relationship is well fit by an expansive nonlinear power law with average exponent of 1.58. These results demonstrate that neurons in early visual pathways exhibit expansive nonlinear responses at low contrasts. Although this thalamic expansive nonlinearity has been largely ignored in models of early visual processing, it may have important consequences because it potentially affects the interpretation of a variety of visual functions.


Sign in / Sign up

Export Citation Format

Share Document