scholarly journals Alternative splicing of coq-2 controls the levels of rhodoquinone in animals

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
June H Tan ◽  
Margot Lautens ◽  
Laura Romanelli-Cedrez ◽  
Jianbin Wang ◽  
Michael R Schertzberg ◽  
...  

Parasitic helminths use two benzoquinones as electron carriers in the electron transport chain. In normoxia, they use ubiquinone (UQ), but in anaerobic conditions inside the host, they require rhodoquinone (RQ) and greatly increase RQ levels. We previously showed the switch from UQ to RQ synthesis is driven by a change of substrates by the polyprenyltransferase COQ-2 (Del Borrello et al., 2019; Roberts Buceta et al., 2019); however, the mechanism of substrate selection is not known. Here, we show helminths synthesize two coq-2 splice forms, coq-2a and coq-2e, and the coq-2e-specific exon is only found in species that synthesize RQ. We show that in Caenorhabditis elegans COQ-2e is required for efficient RQ synthesis and survival in cyanide. Importantly, parasites switch from COQ-2a to COQ-2e as they transit into anaerobic environments. We conclude helminths switch from UQ to RQ synthesis principally via changes in the alternative splicing of coq-2.

Author(s):  
June H. Tan ◽  
Margot Lautens ◽  
Laura Romanelli-Cedrez ◽  
Jianbin Wang ◽  
Michael R. Schertzberg ◽  
...  

AbstractParasitic helminths use two benzoquinones as electron carriers in the electron transport chain. In aerobic environments they use ubiquinone (UQ) but in anaerobic environments inside the host, they require rhodoquinone (RQ) and greatly increase RQ levels. The switch to RQ synthesis is driven by substrate selection by the polyprenyltransferase COQ-2 but the mechanisms underlying this substrate choice are unknown. We found that helminths make two coq-2 isoforms, coq-2a and coq-2e, by alternative splicing. COQ-2a is homologous to COQ2 from other eukaryotes but the COQ-2e-specific exon is only found in species that make RQ and its inclusion changes the enzyme core. We show COQ-2e is required for RQ synthesis and for survival in cyanide in C. elegans. Crucially, we see a switch from COQ-2a to COQ-2e as parasites transition into anaerobic environments. We conclude that under anaerobic conditions helminths switch from UQ to RQ synthesis via alternative splicing of coq-2.


2009 ◽  
Vol 76 (5) ◽  
pp. 1311-1319 ◽  
Author(s):  
Sybille Tachon ◽  
Johannes Bernhard Brandsma ◽  
Mireille Yvon

ABSTRACT The redox potential plays a major role in the microbial and sensorial quality of fermented dairy products. The redox potential of milk (around 400 mV) is mainly due to the presence of oxygen and many other oxidizing compounds. Lactococcus lactis has a strong ability to decrease the redox potential of milk to a negative value (−220 mV), but the molecular mechanisms of milk reduction have never been addressed. In this study, we investigated the impact of inactivation of genes encoding NADH oxidases (noxE and ahpF) and components of the electron transport chain (ETC) (menC and noxAB) on the ability of L. lactis to decrease the redox potential of ultrahigh-temperature (UHT) skim milk during growth under aerobic and anaerobic conditions. Our results revealed that elimination of oxygen is required for milk reduction and that NoxE is mainly responsible for the rapid removal of oxygen from milk before the exponential growth phase. The ETC also contributes slightly to oxygen consumption, especially during the stationary growth phase. We also demonstrated that the ETC is responsible for the decrease in the milk redox potential from 300 mV to −220 mV when the oxygen concentration reaches zero or under anaerobic conditions. This suggests that the ETC is responsible for the reduction of oxidizing compounds other than oxygen. Moreover, we found great diversity in the reducing activities of natural L. lactis strains originating from the dairy environment. This diversity allows selection of specific strains that can be used to modulate the redox potential of fermented dairy products to optimize their microbial and sensorial qualities.


Sign in / Sign up

Export Citation Format

Share Document