scholarly journals pH-dependent 11° F1FO ATP synthase sub-steps reveal insight into the FO torque generating mechanism

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Seiga Yanagisawa ◽  
Wayne D Frasch

Most cellular ATP is made by rotary F1FO ATP synthases using proton translocation-generated clockwise torque on the FO c-ring rotor, while F1-ATP hydrolysis can force counterclockwise rotation and proton pumping. The FO torque-generating mechanism remains elusive even though the FO interface of stator subunit-a, which contains the transmembrane proton half-channels, and the c-ring is known from recent F1FO structures. Here, single-molecule F1FO rotation studies determined that the pKa values of the half-channels differ, show that mutations of residues in these channels change the pKa values of both half-channels, and reveal the ability of FO to undergo single c-subunit rotational stepping. These experiments provide evidence to support the hypothesis that proton translocation through FO operates via a Grotthuss mechanism involving a column of single water molecules in each half-channel linked by proton translocation-dependent c-ring rotation. We also observed pH-dependent 11° ATP synthase-direction sub-steps of the E. coli c10-ring of F1FO against the torque of F1-ATPase-dependent rotation that result from H+ transfer events from FO subunit-a groups with a low pKa to one c-subunit in the c-ring, and from an adjacent c-subunit to stator groups with a high pKa. These results support a mechanism in which alternating proton translocation-dependent 11° and 25° synthase-direction rotational sub-steps of the c10-ring occur to sustain F1FO ATP synthesis.

2021 ◽  
Author(s):  
Wayne D Frasch ◽  
Seiga Yanagisawa

Most cellular ATP is made by rotary F1FO ATP synthases using proton translocation-generated clockwise torque on the FO c-ring rotor, while F1-ATP hydrolysis can force anticlockwise rotation and proton pumping. Although the interface of stator subunit-a containing the transmembrane half-channels and the c-ring is known from recent F1FO structures, the torque generating mechanism remains elusive. Here, single-molecule studies reveal pH-dependent 11° rotational sub-steps in the ATP synthase direction of the E. coli c10-ring of F1FO against the force of F1- ATPase-dependent rotation that result from H+ transfer events from FO subunit-a groups with a low pKa to one c-subunit of the c-ring, and from an adjacent c-subunit to stator groups with a high pKa. Mutations of subunit-a residues in the proton translocation channels alter these pKa values, and the ability of synthase substeps to occur. Alternating 11° and 25° sub-steps then result in sustained ATP synthase rotation of the c10-ring.


2000 ◽  
Vol 347 (3) ◽  
pp. 797-805 ◽  
Author(s):  
Phillip H. KUO ◽  
Robert K. NAKAMOTO

Subunit a of the ATP synthase Fo sector contains a transmembrane helix that interacts with subunit c and is critical for H+ transport activity. From a cysteine scan in the region around the essential subunit a residue, Arg-210, we found that the replacement of aGly-213 greatly attenuated ATP hydrolysis, ATP-dependent proton pumping and ∆μH+-dependent ATP synthesis. Various amino acid substitutions caused similar effects, suggesting that functional perturbations were caused by altering the environment or conformation of aArg-210. aG213N, which was particularly severe in effect, was suppressed by two second-site mutations, aL251V and cD61E. These mutations restored efficient coupling; the latter also increased ATP-dependent proton transport rates. These results were consistent with the proposed functional interaction between aArg-210 and cAsp-61, the likely carrier of the transported proton. From Arrhenius analysis of steady-state ATP hydrolytic activity, the transport mutants had large increases in the transition-state enthalpic and entropic parameters. Linear isokinetic relationships demonstrate that the transport mechanism is coupled to the rate-limiting catalytic transition-state step, which we have previously shown to involve the rotation of the γ subunit in multi-site, co-operative catalysis.


2018 ◽  
Author(s):  
Hui Guo ◽  
Toshiharu Suzuki ◽  
John L. Rubinstein

AbstractATP synthases produce ATP from ADP and inorganic phosphate with energy from a transmembrane proton motive force. Bacterial ATP synthases have been studied extensively because they are the simplest form of the enzyme and because of the relative ease of genetic manipulation of these complexes. We expressed theBacillusPS3 ATP synthase inEschericia coli, purified it, and imaged it by cryo-EM, allowing us to build atomic models of the complex in three rotational states. The position of subunitεshows how it is able to inhibit ATP hydrolysis while allowing ATP synthesis. The architecture of the membrane region shows how the simple bacterial ATP synthase is able to perform the same core functions as the equivalent, but more complicated, mitochondrial complex. The structures reveal the path of transmembrane proton translocation and provide a model for understanding decades of biochemical analysis interrogating the roles of specific residues in the enzyme.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Hui Guo ◽  
Toshiharu Suzuki ◽  
John L Rubinstein

ATP synthases produce ATP from ADP and inorganic phosphate with energy from a transmembrane proton motive force. Bacterial ATP synthases have been studied extensively because they are the simplest form of the enzyme and because of the relative ease of genetic manipulation of these complexes. We expressed the Bacillus PS3 ATP synthase in Eschericia coli, purified it, and imaged it by cryo-EM, allowing us to build atomic models of the complex in three rotational states. The position of subunit ε shows how it is able to inhibit ATP hydrolysis while allowing ATP synthesis. The architecture of the membrane region shows how the simple bacterial ATP synthase is able to perform the same core functions as the equivalent, but more complicated, mitochondrial complex. The structures reveal the path of transmembrane proton translocation and provide a model for understanding decades of biochemical analysis interrogating the roles of specific residues in the enzyme.


2021 ◽  
Author(s):  
Thomas Heitkamp ◽  
Michael Börsch

ABSTRACTFoF1-ATP synthases are the ubiquitous membrane enzymes which catalyze ATP synthesis or ATP hydrolysis in reverse, respectively. Enzyme kinetics are controlled by internal subunit rotation, by substrate and product concentrations, by mechanical inhibitory mechanisms, but also by the electrochemical potential of protons across the membrane. By utilizing an Anti- Brownian electrokinetic trap (ABEL trap), single-molecule Förster resonance energy transfer (smFRET)-based subunit rotation monitoring was prolonged from milliseconds to seconds. The extended observation times for single proteoliposomes in solution allowed to observe fluctuating rotation rates of individual enzymes and to map the broad distributions of ATP-dependent catalytic rates in FoF1-ATP synthase. The buildup of an electrochemical potential of protons was confirmed to limit the maximum rate of ATP hydrolysis. In the presence of ionophores and uncouplers the fastest subunit rotation speeds measured in single reconstituted FoF1-ATP synthases were 180 full rounds per second, i.e. much faster than measured by biochemical ensemble averaging, but not as fast as the maximum rotational speed reported previously for isolated single F1 fragments without coupling to the membrane-embedded Fo domain of the enzyme.


2019 ◽  
Author(s):  
Shintaroh Kubo ◽  
Toru Niina ◽  
Shoji Takada

AbstractThe FO motor in FOF1 ATP synthase rotates its rotor driven by the proton motive force. While earlier studies elucidated basic mechanisms therein, recent advances in high-resolution cryo-electron microscopy enabled to investigate proton-transfer coupled FO rotary dynamics at structural details. Here, developing a hybrid Monte Carlo/molecular dynamics simulation method, we studied reversible dynamics of a yeast mitochondrial FO. We obtained the 36°-stepwise rotations of FO per one proton transfer in the ATP synthesis mode and the proton pumping in the ATP hydrolysis mode. In both modes, the most prominent path alternatively sampled states with two and three deprotonated glutamates in c-ring, by which the c-ring rotates one step. The free energy transduction efficiency in the model FO motor reaches ~ 90% in optimal conditions. Moreover, mutations in key glutamate and a highly conserved arginine increased proton leakage and markedly decreased the coupling, in harmony with previous experiments.


2021 ◽  
Author(s):  
Xin Su ◽  
Alain Dautant ◽  
Malgorzata Rak ◽  
François Godard ◽  
Nahia Ezkurdia ◽  
...  

Abstract The human ATP synthase is an assembly of 29 subunits of 18 different types, of which only two (a and 8) are encoded in the mitochondrial genome. Subunit a, together with an oligomeric ring of c-subunit (c-ring), forms the proton pathway responsible for the transport of protons through the mitochondrial inner membrane, coupled to rotation of the c-ring and ATP synthesis. Neuromuscular diseases have been associated to a number of mutations in the gene encoding subunit a, ATP6. The most common, m.8993 T > G, leads to replacement of a strictly conserved leucine residue with arginine (aL156R). We previously showed that the equivalent mutation (aL173R) dramatically compromises respiratory growth of Saccharomyces cerevisiae and causes a 90% drop in the rate of mitochondrial ATP synthesis. Here we isolated revertants from the aL173R strain that show improved respiratory growth. Four first-site reversions at codon 173 (aL173M, aL173S, aL173K, and aL173W) and five second-site reversions at another codon (aR169M, aR169S, aA170P, aA170G, and aI216S) were identified. Based on the atomic structures of yeast ATP synthase and the biochemical properties of the revertant strains, we propose that the aL173R mutation is responsible for unfavorable electrostatic interactions that prevent the release of protons from the c-ring into a channel from which protons move from the c-ring to the mitochondrial matrix. The results provide further evidence that yeast aL173 (and thus human aL156) optimizes the exit of protons from ATP synthase, but is not essential despite its strict evolutionnary conservation.


2017 ◽  
Vol 114 (13) ◽  
pp. 3409-3414 ◽  
Author(s):  
Jiuya He ◽  
Holly C. Ford ◽  
Joe Carroll ◽  
Shujing Ding ◽  
Ian M. Fearnley ◽  
...  

The permeability transition in human mitochondria refers to the opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membrane. Opening can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane, and ATP synthesis, followed by cell death. Recent proposals suggest that the pore is associated with the ATP synthase complex and specifically with the ring of c-subunits that constitute the membrane domain of the enzyme’s rotor. The c-subunit is produced from three nuclear genes, ATP5G1, ATP5G2, and ATP5G3, encoding identical copies of the mature protein with different mitochondrial-targeting sequences that are removed during their import into the organelle. To investigate the involvement of the c-subunit in the PTP, we generated a clonal cell, HAP1-A12, from near-haploid human cells, in which ATP5G1, ATP5G2, and ATP5G3 were disrupted. The HAP1-A12 cells are incapable of producing the c-subunit, but they preserve the characteristic properties of the PTP. Therefore, the c-subunit does not provide the PTP. The mitochondria in HAP1-A12 cells assemble a vestigial ATP synthase, with intact F1-catalytic and peripheral stalk domains and the supernumerary subunits e, f, and g, but lacking membrane subunits ATP6 and ATP8. The same vestigial complex plus associated c-subunits was characterized from human 143B ρ0 cells, which cannot make the subunits ATP6 and ATP8, but retain the PTP. Therefore, none of the membrane subunits of the ATP synthase that are involved directly in transmembrane proton translocation is involved in forming the PTP.


2014 ◽  
Vol 34 (2) ◽  
Author(s):  
Asha Manikkoth Balakrishna ◽  
Holger Seelert ◽  
Sven-Hendric Marx ◽  
Norbert A. Dencher ◽  
Gerhard Grüber

In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b’ and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector. Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and β=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å.


2015 ◽  
Vol 290 (34) ◽  
pp. 21032-21041 ◽  
Author(s):  
Naman B. Shah ◽  
Thomas M. Duncan

F-type ATP synthases are rotary nanomotor enzymes involved in cellular energy metabolism in eukaryotes and eubacteria. The ATP synthase from Gram-positive and -negative model bacteria can be autoinhibited by the C-terminal domain of its ϵ subunit (ϵCTD), but the importance of ϵ inhibition in vivo is unclear. Functional rotation is thought to be blocked by insertion of the latter half of the ϵCTD into the central cavity of the catalytic complex (F1). In the inhibited state of the Escherichia coli enzyme, the final segment of ϵCTD is deeply buried but has few specific interactions with other subunits. This region of the ϵCTD is variable or absent in other bacteria that exhibit strong ϵ-inhibition in vitro. Here, genetically deleting the last five residues of the ϵCTD (ϵΔ5) caused a greater defect in respiratory growth than did the complete absence of the ϵCTD. Isolated membranes with ϵΔ5 generated proton-motive force by respiration as effectively as with wild-type ϵ but showed a nearly 3-fold decrease in ATP synthesis rate. In contrast, the ϵΔ5 truncation did not change the intrinsic rate of ATP hydrolysis with membranes. Further, the ϵΔ5 subunit retained high affinity for isolated F1 but reduced the maximal inhibition of F1-ATPase by ϵ from >90% to ∼20%. The results suggest that the ϵCTD has distinct regulatory interactions with F1 when rotary catalysis operates in opposite directions for the hydrolysis or synthesis of ATP.


Sign in / Sign up

Export Citation Format

Share Document