scholarly journals T2K Future Prospects with J-PARC Neutrino Beam and Near Detector Upgrades

Author(s):  
Tsunayuki Matsubara
2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
K. Abe ◽  
◽  
N. Akhlaq ◽  
R. Akutsu ◽  
A. Ali ◽  
...  

Abstract The electron (anti-)neutrino component of the T2K neutrino beam constitutes the largest background in the measurement of electron (anti-)neutrino appearance at the far detector. The electron neutrino scattering is measured directly with the T2K off-axis near detector, ND280. The selection of the electron (anti-)neutrino events in the plastic scintillator target from both neutrino and anti-neutrino mode beams is discussed in this paper. The flux integrated single differential charged-current inclusive electron (anti-)neutrino cross-sections, dσ/dp and dσ/d cos(θ), and the total cross-sections in a limited phase-space in momentum and scattering angle (p > 300 MeV/c and θ ≤ 45°) are measured using a binned maximum likelihood fit and compared to the neutrino Monte Carlo generator predictions, resulting in good agreement.


2012 ◽  
Vol 229-232 ◽  
pp. 504
Author(s):  
I. Efthymiopoulos ◽  
K. Cornelis ◽  
E. Gschwendtner ◽  
A. Pardons ◽  
H. Vincke ◽  
...  

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
M. A. Acero ◽  
P. Adamson ◽  
G. Agam ◽  
L. Aliaga ◽  
T. Alion ◽  
...  

AbstractThe two-detector design of the NOvA neutrino oscillation experiment, in which two functionally identical detectors are exposed to an intense neutrino beam, aids in canceling leading order effects of cross-section uncertainties. However, limited knowledge of neutrino interaction cross sections still gives rise to some of the largest systematic uncertainties in current oscillation measurements. We show contemporary models of neutrino interactions to be discrepant with data from NOvA, consistent with discrepancies seen in other experiments. Adjustments to neutrino interaction models in GENIE are presented, creating an effective model that improves agreement with our data. We also describe systematic uncertainties on these models, including uncertainties on multi-nucleon interactions from a newly developed procedure using NOvA near detector data.


2005 ◽  
Vol 20 (14) ◽  
pp. 3059-3061 ◽  
Author(s):  
◽  
CHRISTOPHER SMITH

The MINOS experiment is designed to search for neutrino oscillations. A neutrino beam from Fermilab is observed by the Near and Far detectors, separated by 735km. A comparison of the observed neutrino events at the two locations allows a measurement of the oscillation parameters to be made. Commissioning of the Near detector is underway and the Far detector is collecting cosmic ray and atmospheric neutrino data. Analysis of the atmospheric neutrino events has begun and neutrino, antineutrino event separation has been achieved. Data collection with the NuMI beam will begin in December 2004.


Instruments ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 31
Author(s):  
Steven Manly ◽  
Mike Kordosky ◽  
On behalf of the DUNE Collaboration

The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents.


Author(s):  
A. V. Akindinov ◽  
E. G. Anassontzis ◽  
G. Anton ◽  
M. Ardid ◽  
J. Aublin ◽  
...  

Abstract The Protvino accelerator facility located in the Moscow region, Russia, is in a good position to offer a rich experimental research program in the field of neutrino physics. Of particular interest is the possibility to direct a neutrino beam from Protvino towards the KM3NeT/ORCA detector, which is currently under construction in the Mediterranean Sea 40 km offshore Toulon, France. This proposal is known as P2O. Thanks to its baseline of 2595 km, this experiment would yield an unparalleled sensitivity to matter effects in the Earth, allowing for the determination of the neutrino mass ordering with a high level of certainty after only a few years of running at a modest beam intensity of $$\approx ~90~\hbox {kW}$$≈90kW. With a prolonged exposure ($$\approx 1500\hbox { kW}\,\,\hbox {year}$$≈1500kWyear), a $$2\sigma $$2σ sensitivity to the leptonic CP-violating Dirac phase can be achieved. A second stage of the experiment, comprising a further intensity upgrade of the accelerator complex and a densified version of the ORCA detector (Super-ORCA), would allow for up to a $$6\sigma $$6σ sensitivity to CP violation and a $$10^\circ {-}17^\circ $$10∘-17∘ resolution on the CP phase after 10 years of running with a 450 kW beam, competitive with other planned experiments. The initial composition and energy spectrum of the neutrino beam would need to be monitored by a near detector, to be constructed several hundred meters downstream from the proton beam target. The same neutrino beam and near detector set-up would also allow for neutrino-nucleus cross section measurements to be performed. A short-baseline sterile neutrino search experiment would also be possible.


Sign in / Sign up

Export Citation Format

Share Document