Elasticity study of textured barium strontium titanate thin films by X-ray diffraction and laser acoustic waves

2017 ◽  
Vol 56 (5) ◽  
pp. 055501
Author(s):  
Anouar Chaabani ◽  
Anouar Njeh ◽  
Wolfgang Donner ◽  
Andreas Klein ◽  
Mohamed Hédi Ben Ghozlen
Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 578
Author(s):  
Agata Lisińska-Czekaj ◽  
Dionizy Czekaj

In the present paper, results of X-ray photoelectron studies of electroceramic thin films of barium strontium titanate, Ba1−xSrxTiO3 (BST), composition deposited on stainless-steel substrates are presented. The thin films were prepared by the sol-gel method. A spin-coating deposition of BST layers with different chemical compositions was utilized so the layer-type structure of (0-2) connectivity was formed. After the deposition, the thin-film samples were heated in air atmosphere at temperature T = 700 °C for 1 h. The surfaces of BST thin films subjected to thermal treatment were studied by X-ray diffraction. X-ray diffraction measurements confirmed the perovskite-type phase for all grown thin-film samples. The oxidation states of the elements were examined by the X-ray photoelectron spectroscopy method. X-ray photoelectron spectroscopy survey spectra as well as high-resolution spectra (photo-peaks) of the main metallic elements, such as Ti, Ba, and Sr, were compared for the layer-type structures, differing in the deposition sequence of the barium strontium titanate layers constituting the BST thin film.


2010 ◽  
Vol 152-153 ◽  
pp. 1013-1016
Author(s):  
Hong Wang ◽  
Jing Yang

Nanometer barium-strontium titanate based coated aluminum oxide (ABST) was prepared by the sol–gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometry (FTIR). Its application in speciation of Cr(III) and Cr(VI) from water were studied. The results showed that the nanometer barium-strontium titanate was immobilized on aluminum oxide firmly, becoming a new adsorbent. Two forms of chromium showed different exchange capacities at different pH values, viz. Cr (III) selectively retained at pH 10–13, whereas Cr (VI) retained at pH 1. Hence complete separation of the two forms of chromium is possible. Retained species were eluted with 5mL of 1 mol•L−1 HCl and 1 mol•L−1 NaOH. The Cr(III) and Cr(VI) concentration was measured by atomic absorption spectroscopy. The adsorbent had a promising prospect in the separation of Cr(III) and Cr(VI) in environment water.


2020 ◽  
Vol 7 (2) ◽  
pp. 1-11
Author(s):  
Hamed A. Gatea ◽  
Iqbal Nahi

"Barium strontium Titanate (BST) is a solid solution consist of BaTiO3 and SrTiO3 that mixed with suitable ratio. Barium strontium Titanate oxide (Ba0.8Sr0.2TiO3) thin films prepared by sol gel technique. Barium strontium Titanate thin films deposited on Si substrate and annealed at [400,500, 600 and 700] ºC. The characterization of BST films investigated by a different technique, the X-Ray Diffraction (XRD) and Scanning Electron Macroscopy (SEM) revealed the phases, crystal structure and surface topography of the films. XRD pattern shows tetragonal phase for Ba0.8Sr0.2TiO3 perovskite structure with many peaks for different plans. The films annealed at the different temperature that indicated intermediate phases on perovskite structure of Ba0.8Sr0.2TiO3.


2011 ◽  
Vol 37 (3) ◽  
pp. 207-209 ◽  
Author(s):  
Vl. M. Mukhortov ◽  
S. V. Biryukov ◽  
Yu. I. Golovko ◽  
G. Ya. Karapet’yan ◽  
S. I. Masychev ◽  
...  

2011 ◽  
Vol 415-417 ◽  
pp. 1964-1968 ◽  
Author(s):  
Li Ping Dai ◽  
Guo Jun Zhang ◽  
Shu Ya Wang ◽  
Zhi Qin Zhong

Subscript textReactive ion etching of barium strontium titanate (BST) thin films using an SF6/Ar plasma has been studied. BST surfaces before and after etching were analyzed by X-ray photoelectron spectroscopy to investigate the reaction ion etching mechanism, and chemical reactions had occurred between the F plasma and the Ba, Sr and Ti metal species. Fluorides of these metals were formed and some remained on the surface during the etching process. Ti can be removed completely by chemical reaction because the TiF4by-product is volatile. Minor quantities of Ti-F could still be detected by narrow scan X-ray photoelectron spectra, which was thought to be present in metal-oxy-fluoride(Metal-O-F). These species were investigated from O1sspectra, and a fluoride-rich surface was formed during etching because the high boiling point BaF2and SrF2residues are hard to remove. The etching rate was limited to 14.28nm/min. A 1-minute Ar/10 plasma physical sputtering was carried out for every 4 minutes of surface etching, which effectively removed remaining surface residue. Sequential chemical reaction and sputtered etching is an effective etching method for BST films.


1995 ◽  
Vol 30 (7) ◽  
pp. 897-907 ◽  
Author(s):  
S. Balakumar ◽  
R. Ilangovan ◽  
S.Ganesa Moorthy ◽  
C. Subramanian

Sign in / Sign up

Export Citation Format

Share Document