Characterization of SiO2 reduction reaction region at void periphery on Si(110)

2018 ◽  
Vol 57 (8S1) ◽  
pp. 08NB13 ◽  
Author(s):  
Masahiro Yano ◽  
Yuki Uozumi ◽  
Satoshi Yasuda ◽  
Chie Tsukada ◽  
Hikaru Yoshida ◽  
...  
2020 ◽  
Author(s):  
Travis Marshall-Roth ◽  
Nicole J. Libretto ◽  
Alexandra T. Wrobel ◽  
Kevin Anderton ◽  
Nathan D. Ricke ◽  
...  

Iron- and nitrogen-doped carbon (Fe-N-C) materials are leading candidates to replace platinum in fuel cells, but their active site structures are poorly understood. A leading postulate is that iron active sites in this class of materials exist in an Fe-N<sub>4</sub> pyridinic ligation environment. Yet, molecular Fe-based catalysts for the oxygen reduction reaction (ORR) generally feature pyrrolic coordination and pyridinic Fe-N<sub>4</sub> catalysts are, to the best of our knowledge, non-existent. We report the synthesis and characterization of a molecular pyridinic hexaazacyclophane macrocycle, (phen<sub>2</sub>N<sub>2</sub>)Fe, and compare its spectroscopic, electrochemical, and catalytic properties for oxygen reduction to a prototypical Fe-N-C material, as well as iron phthalocyanine, (Pc)Fe, and iron octaethylporphyrin, (OEP)Fe, prototypical pyrrolic iron macrocycles. N 1s XPS signatures for coordinated N atoms in (phen<sub>2</sub>N<sub>2</sub>)Fe are positively shifted relative to (Pc)Fe and (OEP)Fe, and overlay with those of Fe-N-C. Likewise, spectroscopic XAS signatures of (phen<sub>2</sub>N<sub>2</sub>)Fe are distinct from those of both (Pc)Fe and (OEP)Fe, and are remarkably similar to those of Fe-N-C with compressed Fe–N bond lengths of 1.97 Å in (phen<sub>2</sub>N<sub>2</sub>)Fe that are close to the average 1.94 Å length in Fe-N-C. Electrochemical studies establish that both (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe have relatively high Fe(III/II) potentials at ~0.6 V, ~300 mV positive of (OEP)Fe. The ORR onset potential is found to directly correlate with the Fe(III/II) potential leading to a ~300 mV positive shift in the onset of ORR for (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe relative to (OEP)Fe. Consequently, the ORR onset for (phen<sub>2</sub>N<sub>2</sub>)Fe and (Pc)Fe is within 150 mV of Fe-N-C. Unlike (OEP)Fe and (Pc)Fe, (phen<sub>2</sub>N<sub>2</sub>)Fe displays excellent selectivity for 4-electron ORR with <4% maximum H<sub>2</sub>O<sub>2</sub> production, comparable to Fe-N-C materials. The aggregate spectroscopic and electrochemical data establish (phen<sub>2</sub>N<sub>2</sub>)Fe as a pyridinic iron macrocycle that effectively models Fe-N-C active sites, thereby providing a rich molecular platform for understanding this important class of catalytic materials.<p><b></b></p>


2013 ◽  
Vol 17 (04) ◽  
pp. 252-258 ◽  
Author(s):  
Qinggang He ◽  
Xiao Cheng ◽  
Ying Wang ◽  
Ruimin Qiao ◽  
Wanli Yang ◽  
...  

The dicobalt complex [ Co2(L2) ] of a Schiff-base pyrrole macrocycle adopts a Pacman structure in solution and the solid state and shows much greater catalytic activity and selectivity for the four-electron oxygen reduction reaction (ORR) than the mononuclear cobalt phthalocyanine (CoPc) counterpart. Soft X-ray absorption spectroscopy (XAS) shows that the Co center in Co2(L2) is of the same valence as mononuclear CoPc . However, the former complex shows higher unoccupied Co 3d density which is believed to be beneficial for electron transfers. Furthermore, the XAS data suggests that the crystal fields for Co2(L2) and CoPc are different, and that an interaction remains between two Co atoms in Co2(L2) . DFT calculations imply that the sterically hindered, cofacial structure of the dicobalt complex is critical for the operation of the four-electron reaction pathway during the ORR.


2005 ◽  
Vol 900 ◽  
Author(s):  
Peter N. Njoki ◽  
Jin Luo ◽  
Aisley Jacob ◽  
Rizwan Munawar ◽  
Bilal Khan ◽  
...  

ABSTRACTThe ability to control composition and size in the synthesis of bimetallic nanoparticles is important for the exploitation of the bimetallic catalytic properties. This paper reports recent findings of an investigation of the synthesis of gold-platinum (AuPt) bimetallic nanoparticles in aqueous solution via reduction of AuCl4− and PtCl42− using a combination of reducing and capping agents. In addition to characterization of the morphological properties of the AuPt nanoparticles using TEM and XRD, the electrocatalytic activity of the carbon-supported AuPt nanoparticle catalysts was also examined for oxygen reduction reaction (ORR) using the rotating disk electrode (RDE) technique. The findings have implications to the design of bimetallic nanoparticle catalysts for fuel cell reactions.


2021 ◽  
Vol MA2021-02 (36) ◽  
pp. 1024-1024
Author(s):  
Hassan Shirzadi Jahromi ◽  
Shivi Saxena ◽  
Sudharsan Sridhar ◽  
Muralidhar K Ghantasala ◽  
Ramakrishna Guda ◽  
...  

2021 ◽  
Vol 104 (8) ◽  
pp. 59-71
Author(s):  
Hassan Shirzadi Jahromi ◽  
Shivi Saxena ◽  
Sudharsan Sridhar ◽  
Muralidhar K Ghantasala ◽  
Ramakrishna Guda ◽  
...  

Archaea ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Yanli Zhang ◽  
Linley R. Schofield ◽  
Carrie Sang ◽  
Debjit Dey ◽  
Ron S. Ronimus

(R)-Sulfolactate dehydrogenase (EC 1.1.1.337), termed ComC, is a member of an NADH/NADPH-dependent oxidoreductase family of enzymes that catalyze the interconversion of 2-hydroxyacids into their corresponding 2-oxoacids. The ComC reaction is reversible and in the biosynthetic direction causes the conversion of (R)-sulfolactate to sulfopyruvate in the production of coenzyme M (2-mercaptoethanesulfonic acid). Coenzyme M is an essential cofactor required for the production of methane by the methyl-coenzyme M reductase complex. ComC catalyzes the third step in the first established biosynthetic pathway of coenzyme M and is also involved in methanopterin biosynthesis. In this study, ComC fromMethanobrevibacter milleraeSM9 was cloned and expressed inEscherichia coliand biochemically characterized. Sulfopyruvate was the preferred substrate using the reduction reaction, with 31% activity seen for oxaloacetate and 0.2% seen forα-ketoglutarate. Optimal activity was observed at pH 6.5. The apparentKMfor coenzyme (NADH) was 55.1 μM, and for sulfopyruvate, it was 196 μM (for sulfopyruvate theVmaxwas 93.9 μmol min−1 mg−1andkcatwas 62.8 s−1). The critical role of ComC in two separate cofactor pathways makes this enzyme a potential means of developing methanogen-specific inhibitors for controlling ruminant methane emissions which are increasingly being recognized as contributing to climate change.


Sign in / Sign up

Export Citation Format

Share Document