scholarly journals Expression, Purification, and Characterization of (R)-Sulfolactate Dehydrogenase (ComC) from the Rumen MethanogenMethanobrevibacter milleraeSM9

Archaea ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Yanli Zhang ◽  
Linley R. Schofield ◽  
Carrie Sang ◽  
Debjit Dey ◽  
Ron S. Ronimus

(R)-Sulfolactate dehydrogenase (EC 1.1.1.337), termed ComC, is a member of an NADH/NADPH-dependent oxidoreductase family of enzymes that catalyze the interconversion of 2-hydroxyacids into their corresponding 2-oxoacids. The ComC reaction is reversible and in the biosynthetic direction causes the conversion of (R)-sulfolactate to sulfopyruvate in the production of coenzyme M (2-mercaptoethanesulfonic acid). Coenzyme M is an essential cofactor required for the production of methane by the methyl-coenzyme M reductase complex. ComC catalyzes the third step in the first established biosynthetic pathway of coenzyme M and is also involved in methanopterin biosynthesis. In this study, ComC fromMethanobrevibacter milleraeSM9 was cloned and expressed inEscherichia coliand biochemically characterized. Sulfopyruvate was the preferred substrate using the reduction reaction, with 31% activity seen for oxaloacetate and 0.2% seen forα-ketoglutarate. Optimal activity was observed at pH 6.5. The apparentKMfor coenzyme (NADH) was 55.1 μM, and for sulfopyruvate, it was 196 μM (for sulfopyruvate theVmaxwas 93.9 μmol min−1 mg−1andkcatwas 62.8 s−1). The critical role of ComC in two separate cofactor pathways makes this enzyme a potential means of developing methanogen-specific inhibitors for controlling ruminant methane emissions which are increasingly being recognized as contributing to climate change.

2009 ◽  
Vol 53 (12) ◽  
pp. 5163-5172 ◽  
Author(s):  
Vidya Dhote ◽  
Agata L. Starosta ◽  
Daniel N. Wilson ◽  
Kevin A. Reynolds

ABSTRACT Hygromycin A (HA) is an aminocyclitol antibiotic produced and excreted by Streptomyces hygroscopicus. Deletion of hyg26 from the hygromycin A biosynthetic gene cluster has previously been shown to result in a mutant that produces 5″-dihydrohygromycin A (DHHA). We report herein on the purification and characterization of Hyg26 expressed in E scherichia coli. The enzyme catalyzes an NAD(H)-dependent reversible interconversion of HA and DHHA, supporting the role of the reduced HA as the penultimate biosynthetic pathway intermediate and not a shunt product. The equilibrium for the Hyg26-catalyzed reaction heavily favors the DHHA intermediate. The high-titer production of the HA product by S. hygroscopicus must be dependent upon a subsequent energetically favorable enzyme-catalyzed process, such as the selective and efficient export of HA. hyg19 encodes a putative proton gradient-dependent transporter, and a mutant lacking this gene was observed to produce less HA and to produce the DHHA intermediate. The DHHA produced by either the Δhyg19 or the Δhyg26 mutant had slightly reduced activity against E. coli and reduced protein synthesis-inhibitory activity in vitro. The data indicate that Hyg26 and Hyg19 have evolved to produce and export the final potent HA product in a coordinated fashion.


2021 ◽  
Vol 22 (4) ◽  
pp. 1800
Author(s):  
Kun-Hua Yu ◽  
Mei-Yu Huang ◽  
Yi-Ru Lee ◽  
Yu-Kie Lin ◽  
Hau-Ren Chen ◽  
...  

Misfolding of prion protein (PrP) into amyloid aggregates is the central feature of prion diseases. PrP has an amyloidogenic C-terminal domain with three α-helices and a flexible tail in the N-terminal domain in which multiple octapeptide repeats are present in most mammals. The role of the octapeptides in prion diseases has previously been underestimated because the octapeptides are not located in the amyloidogenic domain. Correlation between the number of octapeptide repeats and age of onset suggests the critical role of octapeptide repeats in prion diseases. In this study, we have investigated four PrP variants without any octapeptides and with 1, 5 and 8 octapeptide repeats. From the comparison of the protein structure and the thermal stability of these proteins, as well as the characterization of amyloids converted from these PrP variants, we found that octapeptide repeats affect both folding and misfolding of PrP creating amyloid fibrils with distinct structures. Deletion of octapeptides forms fewer twisted fibrils and weakens the cytotoxicity. Insertion of octapeptides enhances the formation of typical silk-like fibrils but it does not increase the cytotoxicity. There might be some threshold effect and increasing the number of peptides beyond a certain limit has no further effect on the cell viability, though the reasons are unclear at this stage. Overall, the results of this study elucidate the molecular mechanism of octapeptides at the onset of prion diseases.


1974 ◽  
Vol 12 (4) ◽  
pp. 543-568 ◽  
Author(s):  
John P. Entelis

Tunisia A has long been regarded as a model of political development and stability in the Third World. There is no doubt that the charismatic Habib Bourguiba, the aging (71) yet indefatigable leader of an effective nation-wide party apparatus, has helped ensure Tunisia's development from the period of the pre-independence struggle until today. It is not unnatural, therefore, given the critical role of Bourguiba in the operation of the political system, to question the degree of institutionalisation, stability, modernity, and democracy that Tunisia could retain after the passing of its dynamic leader.


2003 ◽  
Vol 9 (1) ◽  
pp. 77-89 ◽  
Author(s):  
Jennifer L. Craft ◽  
Yih-Chern Horng ◽  
Stephen W. Ragsdale ◽  
Thomas C. Brunold

2016 ◽  
Vol 84 (9) ◽  
pp. 2697-2702 ◽  
Author(s):  
Zhangsheng Yang ◽  
Lingli Tang ◽  
Lili Shao ◽  
Yuyang Zhang ◽  
Tianyuan Zhang ◽  
...  

Despite the extensivein vitrocharacterization of CPAF (chlamydialprotease/proteasome-likeactivityfactor), its role in chlamydial infection and pathogenesis remains unclear. We now report that aChlamydia trachomatisstrain deficient in expression of CPAF (L2-17) is no longer able to establish a successful infection in the mouse lower genital tract following an intravaginal inoculation. The L2-17 organisms were cleared from the mouse lower genital tract within a few days, while a CPAF-sufficientC. trachomatisstrain (L2-5) survived in the lower genital tract for more than 3 weeks. However, both the L2-17 and L2-5 organisms maintained robust infection courses that lasted up to 4 weeks when they were directly delivered into the mouse upper genital tract. The CPAF-dependent chlamydial survival in the lower genital tract was confirmed in multiple strains of mice. Thus, we have demonstrated a critical role of CPAF in promotingC. trachomatissurvival in the mouse lower genital tracts. It will be interesting to further investigate the mechanisms of the CPAF-dependent chlamydial pathogenicity.


Blood ◽  
2015 ◽  
Vol 125 (22) ◽  
pp. 3388-3392 ◽  
Author(s):  
Olli Silvennoinen ◽  
Stevan R. Hubbard

Abstract The critical role of Janus kinase-2 (JAK2) in regulation of myelopoiesis was established 2 decades ago, but identification of mutations in the pseudokinase domain of JAK2 in myeloproliferative neoplasms (MPNs) and in other hematologic malignancies highlighted the role of JAK2 in human disease. These findings have revolutionized the diagnostics of MPNs and led to development of novel JAK2 therapeutics. However, the molecular mechanisms by which mutations in the pseudokinase domain lead to hyperactivation of JAK2 and clinical disease have been unclear. Here, we describe recent advances in the molecular characterization of the JAK2 pseudokinase domain and how pathogenic mutations lead to constitutive activation of JAK2.


2009 ◽  
Vol 8 (4) ◽  
pp. 595-605 ◽  
Author(s):  
Michael R. Botts ◽  
Steven S. Giles ◽  
Marcellene A. Gates ◽  
Thomas R. Kozel ◽  
Christina M. Hull

ABSTRACT Spores are essential particles for the survival of many organisms, both prokaryotic and eukaryotic. Among the eukaryotes, fungi have developed spores with superior resistance and dispersal properties. For the human fungal pathogens, however, relatively little is known about the role that spores play in dispersal and infection. Here we present the purification and characterization of spores from the environmental fungus Cryptococcus neoformans. For the first time, we purified spores to homogeneity and assessed their morphological, stress resistance, and surface properties. We found that spores are morphologically distinct from yeast cells and are covered with a thick spore coat. Spores are also more resistant to environmental stresses than yeast cells and display a spore-specific configuration of polysaccharides on their surfaces. Surprisingly, we found that the surface of the spore reacts with antibodies to the polysaccharide glucuronoxylomannan, the most abundant component of the polysaccharide capsule required for C. neoformans virulence. We explored the role of capsule polysaccharide in spore development by assessing spore formation in a series of acapsular strains and determined that capsule biosynthesis genes are required for proper sexual development and normal spore formation. Our findings suggest that C. neoformans spores may have an adapted cell surface that facilitates persistence in harsh environments and ultimately allows them to infect mammalian hosts.


2017 ◽  
Author(s):  
Dipti D. Nayak ◽  
Nilkamal Mahanta ◽  
Douglas A. Mitchell ◽  
William W. Metcalf

AbstractThe enzyme methyl-coenzyme M reductase (MCR), found in strictly anaerobic methanogenic and methanotrophic archaea, catalyzes a reversible reaction involved in the production and consumption of the potent greenhouse gas methane. The α subunit of this enzyme (McrA) contains several unusual post-translational modifications, including an exceptionally rare thioamidation of glycine. Based on the presumed function of homologous genes involved in the biosynthesis of thioamide-containing natural products, we hypothesized that the archaealtfuAandycaOgenes would be responsible for post-translational installation of thioglycine into McrA. Mass spectrometric characterization of McrA in a ΔycaO-tfuAmutant of the methanogenic archaeonMethanosarcina acetivoransrevealed the presence of glycine, rather than thioglycine, supporting this hypothesis. Physiological characterization of this mutant suggested a new role for the thioglycine modification in enhancing protein stability, as opposed to playing a direct catalytic role. The universal conservation of this modification suggests that MCR arose in a thermophilic ancestor.


2021 ◽  
Vol 11 ◽  
Author(s):  
Joshua P. Nederveen ◽  
Geoffrey Warnier ◽  
Alessia Di Carlo ◽  
Mats I. Nilsson ◽  
Mark A. Tarnopolsky

The benefits of exercise on health and longevity are well-established, and evidence suggests that these effects are partially driven by a spectrum of bioactive molecules released into circulation during exercise (e.g., exercise factors or ‘exerkines’). Recently, extracellular vesicles (EVs), including microvesicles (MVs) and exosomes or exosome-like vesicles (ELVs), were shown to be secreted concomitantly with exerkines. These EVs have therefore been proposed to act as cargo carriers or ‘mediators’ of intercellular communication. Given these findings, there has been a rapidly growing interest in the role of EVs in the multi-systemic, adaptive response to exercise. This review aims to summarize our current understanding of the effects of exercise on MVs and ELVs, examine their role in the exercise response and long-term adaptations, and highlight the main methodological hurdles related to blood collection, purification, and characterization of ELVs.


Sign in / Sign up

Export Citation Format

Share Document