Selective Processing of Individual Carbon-Nanotubes Using Atomic Force Microscopy Installed in Transmission Electron Microscope

2001 ◽  
Author(s):  
Toru Kuzumaki ◽  
Tokushi Kizuka ◽  
Yasuhiro Horiike
1997 ◽  
Vol 3 (3) ◽  
pp. 203-213 ◽  
Author(s):  
J.A. DeRose ◽  
J.-P. Revel

Abstract: We have developed a method for the examination of atomic force microscopy (scanning force microscopy) tips using a high-resolution transmission electron microscope (TEM). The tips can be imaged in a nondestructive way, enabling one to observe the shape of an atomic force microscope probe in the vicinity of the apex with high resolution. We have obtained images of atomic force microscopy probes with a resolution on the order of 1 nm. The tips can be imaged repeatedly, so one can examine tips before and after use. We have found that the tip can become blunted with use, the rate of wear depending upon the sample and tip materials and the scanning conditions. We have also found that the tips easily accrue contamination. We have studied both commercially produced tips, as well as tips grown by electron beam deposition. Direct imaging in the TEM should prove useful for image deconvolution methods because one does not have to make any assumptions concerning the general shape of the tip profile.


2021 ◽  
Author(s):  
Xiaohui Li ◽  
Qi Zhang ◽  
Xin Zhang

New amphiphilic carbazole-based dyes assemble in water into deep-blue-emitting, highly fluorescent helical aggregates as observed by transmission electron microscope and atomic force microscopy. Single crystal X-ray diffraction and NMR spectroscopy...


2001 ◽  
Vol 79 (27) ◽  
pp. 4580-4582 ◽  
Author(s):  
Toru Kuzumaki ◽  
Hidetaka Sawada ◽  
Hideki Ichinose ◽  
Yasuhiro Horiike ◽  
Tokushi Kizuka

2008 ◽  
Vol 8 (11) ◽  
pp. 5678-5683 ◽  
Author(s):  
N. Garmendia ◽  
L. Bilbao ◽  
R. Muñoz ◽  
G. Imbuluzqueta ◽  
A. García ◽  
...  

Carbon nanotubes have unique mechanical properties that open attractive possibilities in many fields, such as the biomedical one. Currently, zirconia ceramics are widely used as femoral heads, but case studies show that delayed failure can occur in vivo due to crack propagation. Nanotubes could avoid the slow crack propagation and enhance the toughness of the ceramic material used for prostheses fabrication. In this work, single-wall carbon nanotubes and multi-wall carbon nanotubes have been partially coated with nanozirconia via hydrothermal synthesis and characterized by several techniques: X-ray diffraction, infrared spectroscopy, scanning electron microscope, transmission electron microscope, electron energy loss spectra, X-ray photoelectronic spectroscopy and atomic force microscopy. By means of these techniques, the existence of bonds between zirconium and the carbon nanotube has been proved. The as covered nanotubes should offer a better wettability in the ceramic matrix and improve the dispersion of the carbon nanotubes, to obtain the desired new ceramic biomaterial with a longer lifetime and better reliability.


2003 ◽  
Vol 543 (1-3) ◽  
pp. 57-62 ◽  
Author(s):  
S. Decossas ◽  
L. Patrone ◽  
A.M. Bonnot ◽  
F. Comin ◽  
M. Derivaz ◽  
...  

Nano Research ◽  
2012 ◽  
Vol 5 (4) ◽  
pp. 235-247 ◽  
Author(s):  
Rouholla Alizadegan ◽  
Albert D. Liao ◽  
Feng Xiong ◽  
Eric Pop ◽  
K. Jimmy Hsia

1995 ◽  
Vol 378 ◽  
Author(s):  
G. Kissinger ◽  
T. Morgenstern ◽  
G. Morgenstern ◽  
H. B. Erzgräber ◽  
H. Richter

AbstractStepwise equilibrated graded GexSii-x (x≤0.2) buffers with threading dislocation densities between 102 and 103 cm−2 on the whole area of 4 inch silicon wafers were grown and studied by transmission electron microscopy, defect etching, atomic force microscopy and photoluminescence spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document