scholarly journals 12 Body size variation : a long standing problem of life history evolution of mosquitoes and mosquito researchers(Contributed Papers,Proceedings of the 55th Annual Meeting of Southern Region)

2006 ◽  
Vol 57 (2) ◽  
pp. 174
Author(s):  
H. Dieng ◽  
Y Eshita
2015 ◽  
Vol 15 (1) ◽  
pp. 19 ◽  
Author(s):  
Christian Kolb ◽  
Torsten M Scheyer ◽  
Adrian M Lister ◽  
Concepcion Azorit ◽  
John de Vos ◽  
...  

2018 ◽  
Author(s):  
Daniel F. Hughes ◽  
Walter E. Meshaka ◽  
Carl S. Lieb ◽  
Joseph H. K. Pechmann

Geographically widespread species that occupy many thermal environments provide testable models for understanding the evolution of life-history responses to latitude, yet studies that draw range-wide conclusions using descriptive data from populations in the core of a species’ distribution can overlook meaningful inter-population variation. The phrynosomatid lizard Phrynosoma cornutum spans an extensive latitudinal distribution in North America and has been well-studied in connection with life-history evolution, yet populations occupying the most northern and coldest areas within its range were absent from previous examinations. We tested genus-wide models and challenged species-specific findings on the evolution of the life-history strategy for P. cornutum using populations at the northern edge of its geographic range and comparative material from farther south. Multivariate analyses revealed that egg dimensions decreased with clutch size, suggestive of a previously unrecognized tradeoff between egg size and egg number in this species. Interestingly, reproductive traits of females with shelled eggs did not covary with latitude, yet we found that populations at the highest latitudes typified several traits of the genus and for the species, including a model for Phrynosoma of large clutches and delayed reproduction. A significant deviation from earlier findings is that we detected latitudinal variation in clutch size. This finding, although novel, is unsurprising given the smaller body sizes from northern populations and the positive relationship between clutch size and body size. Intriguing, however, was that the significant reduction in clutch size persisted when female body size was held constant, indicating a reproductive disadvantage to living at higher latitudes. We discuss the possible selective pressures that may have resulted in the diminishing returns on reproductive output at higher latitudes. Our findings highlight the type of insights in the study of life-history evolution that can be gained across Phrynosomatidae from the inclusion of populations representing latitudinal endpoints.


1997 ◽  
Vol 22 (1) ◽  
pp. 55-68 ◽  
Author(s):  
CHRISTIAN PETER KLINGENBERG ◽  
JOHN SPENCE

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maggie M. Hantak ◽  
Bryan S. McLean ◽  
Daijiang Li ◽  
Robert P. Guralnick

AbstractAnthropogenically-driven climate warming is a hypothesized driver of animal body size reductions. Less understood are effects of other human-caused disturbances on body size, such as urbanization. We compiled 140,499 body size records of over 100 North American mammals to test how climate and human population density, a proxy for urbanization, and their interactions with species traits, impact body size. We tested three hypotheses of body size variation across urbanization gradients: urban heat island effects, habitat fragmentation, and resource availability. Our results demonstrate that both urbanization and temperature influence mammalian body size variation, most often leading to larger individuals, thus supporting the resource availability hypothesis. In addition, life history and other ecological factors play a critical role in mediating the effects of climate and urbanization on body size. Larger mammals and species that utilize thermal buffering are more sensitive to warmer temperatures, while flexibility in activity time appears to be advantageous in urbanized areas. This work highlights the value of using digitized, natural history data to track how human disturbance drives morphological variation.


2010 ◽  
Vol 59 (5) ◽  
pp. 504-517 ◽  
Author(s):  
Jonathan M. Waters ◽  
Diane L. Rowe ◽  
Christopher P. Burridge ◽  
Graham P. Wallis

Sign in / Sign up

Export Citation Format

Share Document