scholarly journals Harvesting social media sentiment analysis to enhance stock market prediction using deep learning

2021 ◽  
Vol 7 ◽  
pp. e476
Author(s):  
Pooja Mehta ◽  
Sharnil Pandya ◽  
Ketan Kotecha

Information gathering has become an integral part of assessing people’s behaviors and actions. The Internet is used as an online learning site for sharing and exchanging ideas. People can actively give their reviews and recommendations for variety of products and services using popular social sites and personal blogs. Social networking sites, including Twitter, Facebook, and Google+, are examples of the sites used to share opinion. The stock market (SM) is an essential area of the economy and plays a significant role in trade and industry development. Predicting SM movements is a well-known and area of interest to researchers. Social networking perfectly reflects the public’s views of current affairs. Financial news stories are thought to have an impact on the return of stock trend prices and many data mining techniques are used address fluctuations in the SM. Machine learning can provide a more accurate and robust approach to handle SM-related predictions. We sought to identify how movements in a company’s stock prices correlate with the expressed opinions (sentiments) of the public about that company. We designed and implemented a stock price prediction accuracy tool considering public sentiment apart from other parameters. The proposed algorithm considers public sentiment, opinions, news and historical stock prices to forecast future stock prices. Our experiments were performed using machine-learning and deep-learning methods including Support Vector Machine, MNB classifier, linear regression, Naïve Bayes and Long Short-Term Memory. Our results validate the success of the proposed methodology.

2021 ◽  
Author(s):  
Jaydip Sen ◽  
Sidra Mehtab ◽  
Abhishek Dutta

Prediction of stock prices has been an important area of research for a long time. While supporters of the <i>efficient market hypothesis</i> believe that it is impossible to predict stock prices accurately, there are formal propositions demonstrating that accurate modeling and designing of appropriate variables may lead to models using which stock prices and stock price movement patterns can be very accurately predicted. Researchers have also worked on technical analysis of stocks with a goal of identifying patterns in the stock price movements using advanced data mining techniques. In this work, we propose an approach of hybrid modeling for stock price prediction building different machine learning and deep learning-based models. For the purpose of our study, we have used NIFTY 50 index values of the National Stock Exchange (NSE) of India, during the period December 29, 2014 till July 31, 2020. We have built eight regression models using the training data that consisted of NIFTY 50 index records from December 29, 2014 till December 28, 2018. Using these regression models, we predicted the <i>open</i> values of NIFTY 50 for the period December 31, 2018 till July 31, 2020. We, then, augment the predictive power of our forecasting framework by building four deep learning-based regression models using long-and short-term memory (LSTM) networks with a novel approach of walk-forward validation. Using the grid-searching technique, the hyperparameters of the LSTM models are optimized so that it is ensured that validation losses stabilize with the increasing number of epochs, and the convergence of the validation accuracy is achieved. We exploit the power of LSTM regression models in forecasting the future NIFTY 50 <i>open</i> values using four different models that differ in their architecture and in the structure of their input data. Extensive results are presented on various metrics for all the regression models. The results clearly indicate that the LSTM-based univariate model that uses one-week prior data as input for predicting the next week's <i>open</i> value of the NIFTY 50 time series is the most accurate model.


2021 ◽  
Author(s):  
Jaydip Sen ◽  
Sidra Mehtab ◽  
Abhishek Dutta

Prediction of stock prices has been an important area of research for a long time. While supporters of the <i>efficient market hypothesis</i> believe that it is impossible to predict stock prices accurately, there are formal propositions demonstrating that accurate modeling and designing of appropriate variables may lead to models using which stock prices and stock price movement patterns can be very accurately predicted. Researchers have also worked on technical analysis of stocks with a goal of identifying patterns in the stock price movements using advanced data mining techniques. In this work, we propose an approach of hybrid modeling for stock price prediction building different machine learning and deep learning-based models. For the purpose of our study, we have used NIFTY 50 index values of the National Stock Exchange (NSE) of India, during the period December 29, 2014 till July 31, 2020. We have built eight regression models using the training data that consisted of NIFTY 50 index records from December 29, 2014 till December 28, 2018. Using these regression models, we predicted the <i>open</i> values of NIFTY 50 for the period December 31, 2018 till July 31, 2020. We, then, augment the predictive power of our forecasting framework by building four deep learning-based regression models using long-and short-term memory (LSTM) networks with a novel approach of walk-forward validation. Using the grid-searching technique, the hyperparameters of the LSTM models are optimized so that it is ensured that validation losses stabilize with the increasing number of epochs, and the convergence of the validation accuracy is achieved. We exploit the power of LSTM regression models in forecasting the future NIFTY 50 <i>open</i> values using four different models that differ in their architecture and in the structure of their input data. Extensive results are presented on various metrics for all the regression models. The results clearly indicate that the LSTM-based univariate model that uses one-week prior data as input for predicting the next week's <i>open</i> value of the NIFTY 50 time series is the most accurate model.


2021 ◽  
Author(s):  
Sidra Mehtab ◽  
Jaydip Sen

Prediction of future movement of stock prices has been a subject matter of many research work. On one hand, we have proponents of the Efficient Market Hypothesis who claim that stock prices cannot be predicted, on the other hand, there are propositions illustrating that, if appropriately modelled, stock prices can be predicted with a high level of accuracy. There is also a gamut of literature on technical analysis of stock prices where the objective is to identify patterns in stock price movements and profit from it. In this work, we propose a hybrid approach for stock price prediction using machine learning and deep learning-based methods. We select the NIFTY 50 index values of the National Stock Exchange (NSE) of India, over a period of four years: 2015 – 2018. Based on the NIFTY data during 2015 – 2018, we build various predictive models using machine learning approaches, and then use those models to predict the “Close” value of NIFTY 50 for the year 2019, with a forecast horizon of one week, i.e., five days. For predicting the NIFTY index movement patterns, we use a number of classification methods, while for forecasting the actual “Close” values of NIFTY index, various regression models are built. We, then, augment our predictive power of the models by building a deep learning-based regression model using Convolutional Neural Network (CNN) with a walk-forward validation. The CNN model is fine-tuned for its parameters so that the validation loss stabilizes with increasing number of iterations, and the training and validation accuracies converge. We exploit the power of CNN in forecasting the future NIFTY index values using three approaches which differ in number of variables used in forecasting, number of sub-models used in the overall models and, size of the input data for training the models. Extensive results are presented on various metrics for all classification and regression models. The results clearly indicate that CNN-based multivariate forecasting model is the most effective and accurate in predicting the movement of NIFTY index values with a weekly forecast horizon.


Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 170 ◽  
Author(s):  
Zhixi Li ◽  
Vincent Tam

Momentum and reversal effects are important phenomena in stock markets. In academia, relevant studies have been conducted for years. Researchers have attempted to analyze these phenomena using statistical methods and to give some plausible explanations. However, those explanations are sometimes unconvincing. Furthermore, it is very difficult to transfer the findings of these studies to real-world investment trading strategies due to the lack of predictive ability. This paper represents the first attempt to adopt machine learning techniques for investigating the momentum and reversal effects occurring in any stock market. In the study, various machine learning techniques, including the Decision Tree (DT), Support Vector Machine (SVM), Multilayer Perceptron Neural Network (MLP), and Long Short-Term Memory Neural Network (LSTM) were explored and compared carefully. Several models built on these machine learning approaches were used to predict the momentum or reversal effect on the stock market of mainland China, thus allowing investors to build corresponding trading strategies. The experimental results demonstrated that these machine learning approaches, especially the SVM, are beneficial for capturing the relevant momentum and reversal effects, and possibly building profitable trading strategies. Moreover, we propose the corresponding trading strategies in terms of market states to acquire the best investment returns.


Computers ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Jurgita Kapočiūtė-Dzikienė ◽  
Robertas Damaševičius ◽  
Marcin Woźniak

We describe the sentiment analysis experiments that were performed on the Lithuanian Internet comment dataset using traditional machine learning (Naïve Bayes Multinomial—NBM and Support Vector Machine—SVM) and deep learning (Long Short-Term Memory—LSTM and Convolutional Neural Network—CNN) approaches. The traditional machine learning techniques were used with the features based on the lexical, morphological, and character information. The deep learning approaches were applied on the top of two types of word embeddings (Vord2Vec continuous bag-of-words with negative sampling and FastText). Both traditional and deep learning approaches had to solve the positive/negative/neutral sentiment classification task on the balanced and full dataset versions. The best deep learning results (reaching 0.706 of accuracy) were achieved on the full dataset with CNN applied on top of the FastText embeddings, replaced emoticons, and eliminated diacritics. The traditional machine learning approaches demonstrated the best performance (0.735 of accuracy) on the full dataset with the NBM method, replaced emoticons, restored diacritics, and lemma unigrams as features. Although traditional machine learning approaches were superior when compared to the deep learning methods; deep learning demonstrated good results when applied on the small datasets.


2021 ◽  
Author(s):  
Zhaoxia Wang ◽  
Zhenda HU ◽  
Fang LI ◽  
Seng-Beng HO

Abstract Stock market trending analysis is one of the key research topics in financial analysis. Various theories once highlighted the non-viability of stock market prediction. With the advent of machine learning and Artificial Intelligence (AI), more and more efforts have been devoted to this research area, and predicting the stock market has been demonstrated to be possible. Learning-based methods have been popularly studied for stock price prediction. However, due to the dynamic nature of the stock market and its non-linearity, stock market prediction is still one of the most dificult tasks. With the rise of social networks, huge amount of data is being generated every day and there is a gaining in popularity of incorporating these data into prediction model in the effort to enhance the prediction performance. Therefore, this paper explores the possibilities of the viability of learning-based stock market trending prediction by incorporating social media sentiment analysis. Six machine learning methods including Multi-Layer Perception, Support Vector Machine, Naïve Bayes, Random Forest, Logistic Regression and Extreme Gradient Boosting are selected as the baseline model. The result indicates the possibilities of successful stock market trending prediction and the performance of different learning-based methods is discussed. It is discovered that the distribution of the value of stocks may affect the prediction performance of the methods involved. This research not only demonstrates the merits and weaknesses of different learning-based methods, but also points out that incorporating social opinion is a right direction for improving the performance of stock market trending prediction.


Author(s):  
Vignesh CK

This paper deals with the techniques of attempting to calculate the future value of a company stock or any other financial instrument which is being traded in a stock exchange. This prediction plays a great role in many financing and investing decisions. This calculation can be done by Machine learning by training a model to identify the trend from past data in order to predict the future. The main topic of study here will be the comparative analysis of the SVM and LTSM algorithms. KEYWORDS: Machine learning, Stock price, Stock market, Support vector machine, neural network, long short term memory.


2020 ◽  
Vol 9 (2) ◽  
pp. 1049-1054

In this paper, we have tried to predict flight delays using different machine learning and deep learning techniques. By using such a model it can be easier to predict whether the flight will be delayed or not. Factors like ‘WeatherDelay’, ‘NASDelay’, ‘Destination’, ‘Origin’ play a vital role in this model. Using machine learning algorithms like Random Forest, Support Vector Machine (SVM) and K-Nearest Neighbors (KNN), the f1-score, precision, recall, support and accuracy have been predicted. To add to the model, Long Short-Term Memory (LSTM) RNN architecture has also been employed. In the paper, the dataset from Bureau of Transportation Statistics (BTS) of the ‘Pittsburgh’ is being used. The results computed from the above mentioned algorithms have been compared. Further, the results were visualized for various airlines to find maximum delay and AUC-ROC curve has been plotted for Random Forest Algorithm. The aim of our research work is to predict the delay so as to minimize loses and increase customer satisfaction.


Author(s):  
Warade Kalyani Gopal ◽  
Jawale Mamta Pandurang ◽  
Tayade Pratiksha Devaram ◽  
Dr. Dinesh D. Patil

In Stock Market Prediction, the aim is to predict for future value of the financial stocks of a company. The recent trend in stock market prediction technologies is the use of machine learning which makes predictions based on the values of current stock market by training on their previous values. Machine learning itself employs different models to make prediction easier. The paper focuses on Regression and LSTM based Machine learning to predict stock values. Factors considered are open, close, low, high and volume. In order to predict market movement, the stock prices and stock indicators in addition to the news related to these stocks. Most of the previous work in this industry focused on either classifying the released market news and demonstrating their effect on the stock price or focused on the historical price movement and predicted their future movement. In this work, we propose an automated trading system that integrates mathematical functions, machine learning, and other external factors such as news’ sentiments for the purpose of a better stock prediction accuracy and issuing profitable trades. The aim to determine the price of a certain stock for the coming end-of-day considering the first several trading hours of the day.


2021 ◽  
Vol 10 (11) ◽  
pp. e33101119347
Author(s):  
Ewethon Dyego de Araujo Batista ◽  
Wellington Candeia de Araújo ◽  
Romeryto Vieira Lira ◽  
Laryssa Izabel de Araujo Batista

Introdução: a dengue é uma arbovirose causada pelo vírus DENV e transmitida para o homem através do mosquito Aedes aegypti. Atualmente, não existe uma vacina eficaz para combater todas as sorologias do vírus. Diante disso, o combate à doença se volta para medidas preventivas contra a proliferação do mosquito. Os pesquisadores estão utilizando Machine Learning (ML) e Deep Learning (DL) como ferramentas para prever casos de dengue e ajudar os governantes nesse combate. Objetivo: identificar quais técnicas e abordagens de ML e de DL estão sendo utilizadas na previsão de dengue. Métodos: revisão sistemática realizada nas bases das áreas de Medicina e de Computação com intuito de responder as perguntas de pesquisa: é possível realizar previsões de casos de dengue através de técnicas de ML e de DL, quais técnicas são utilizadas, onde os estudos estão sendo realizados, como e quais dados estão sendo utilizados? Resultados: após realizar as buscas, aplicar os critérios de inclusão, exclusão e leitura aprofundada, 14 artigos foram aprovados. As técnicas Random Forest (RF), Support Vector Regression (SVR), e Long Short-Term Memory (LSTM) estão presentes em 85% dos trabalhos. Em relação aos dados, na maioria, foram utilizados 10 anos de dados históricos da doença e informações climáticas. Por fim, a técnica Root Mean Absolute Error (RMSE) foi a preferida para mensurar o erro. Conclusão: a revisão evidenciou a viabilidade da utilização de técnicas de ML e de DL para a previsão de casos de dengue, com baixa taxa de erro e validada através de técnicas estatísticas.


Sign in / Sign up

Export Citation Format

Share Document