scholarly journals Matching sensor ontologies with unsupervised neural network with competitive learning

2021 ◽  
Vol 7 ◽  
pp. e763
Author(s):  
Xingsi Xue ◽  
Haolin Wang ◽  
Wenyu Liu

Sensor ontologies formally model the core concepts in the sensor domain and their relationships, which facilitates the trusted communication and collaboration of Artificial Intelligence of Things (AIoT). However, due to the subjectivity of the ontology building process, sensor ontologies might be defined by different terms, leading to the problem of heterogeneity. In order to integrate the knowledge of two heterogeneous sensor ontologies, it is necessary to determine the correspondence between two heterogeneous concepts, which is the so-called ontology matching. Recently, more and more neural networks have been considered as an effective approach to address the ontology heterogeneity problem, but they require a large number of manually labelled training samples to train the network, which poses an open challenge. In order to improve the quality of the sensor ontology alignment, an unsupervised neural network model is proposed in this work. It first models the ontology matching problem as a binary classification problem, and then uses a competitive learning strategy to efficiently cluster the ontologies to be matched, which does not require the labelled training samples. The experiment utilizes the benchmark track provided by the Ontology Alignment Evaluation Initiative (OAEI) and multiple real sensor ontology alignment tasks to test our proposal’s performance. The experimental results show that the proposed approach is able to determine higher quality alignment results compared to other matching strategies under different domain knowledge such as bibliographic and real sensor ontologies.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hai Zhu ◽  
Xingsi Xue ◽  
Chengcai Jiang ◽  
He Ren

Due to the problem of data heterogeneity in the semantic sensor networks, the communications among different sensor network applications are seriously hampered. Although sensor ontology is regarded as the state-of-the-art knowledge model for exchanging sensor information, there also exists the heterogeneity problem between different sensor ontologies. Ontology matching is an effective method to deal with the sensor ontology heterogeneity problem, whose kernel technique is the similarity measure. How to integrate different similarity measures to determine the alignment of high quality for the users with different preferences is a challenging problem. To face this challenge, in our work, a Multiobjective Evolutionary Algorithm (MOEA) is used in determining different nondominated solutions. In particular, the evaluating metric on sensor ontology alignment’s quality is proposed, which takes into consideration user’s preferences and do not need to use the Reference Alignment (RA) beforehand; an optimization model is constructed to define the sensor ontology matching problem formally, and a selection operator is presented, which can make MOEA uniformly improve the solution’s objectives. In the experiment, the benchmark from the Ontology Alignment Evaluation Initiative (OAEI) and the real ontologies of the sensor domain is used to test the performance of our approach, and the experimental results show the validity of our approach.


Author(s):  
Xingsi Xue ◽  
Junfeng Chen

Since different sensor ontologies are developed independently and for different requirements, a concept in one sensor ontology could be described with different terminologies or in different context in another sensor ontology, which leads to the ontology heterogeneity problem. To bridge the semantic gap between the sensor ontologies, authors propose a semi-automatic sensor ontology matching technique based on an Interactive MOEA (IMOEA), which can utilize the user's knowledge to direct MOEA's search direction. In particular, authors construct a new multi-objective optimal model for the sensor ontology matching problem, and design an IMOEA with t-dominance rule to solve the sensor ontology matching problem. In experiments, the benchmark track and anatomy track from the Ontology Alignment Evaluation Initiative (OAEI) and two pairs of real sensor ontologies are used to test performance of the authors' proposal. The experimental results show the effectiveness of the approach.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2056 ◽  
Author(s):  
Xingsi Xue ◽  
Junfeng Chen

Semantic Sensor Web (SSW) links the semantic web technique with the sensor network, which utilizes sensor ontology to describe sensor information. Annotating sensor data with different sensor ontologies can be of help to implement different sensor systems’ inter-operability, which requires that the sensor ontologies themselves are inter-operable. Therefore, it is necessary to match the sensor ontologies by establishing the meaningful links between semantically related sensor information. Since the Swarm Intelligent Algorithm (SIA) represents a good methodology for addressing the ontology matching problem, we investigate a popular SIA, that is, the Firefly Algorithm (FA), to optimize the ontology alignment. To save the memory consumption and better trade off the algorithm’s exploitation and exploration, in this work, we propose a general-purpose ontology matching technique based on Compact co-Firefly Algorithm (CcFA), which combines the compact encoding mechanism with the co-Evolutionary mechanism. Our proposal utilizes the Gray code to encode the solutions, two compact operators to respectively implement the exploiting strategy and exploring strategy, and two Probability Vectors (PVs) to represent the swarms that respectively focuses on the exploitation and exploration. Through the communications between two swarms in each generation, CcFA is able to efficiently improve the searching efficiency when addressing the sensor ontology matching problem. The experiment utilizes the Conference track and three pairs of real sensor ontologies to test our proposal’s performance. The statistical results show that CcFA based ontology matching technique can effectively match the sensor ontologies and other general ontologies in the domain of organizing conferences.


Author(s):  
Xingsi Xue ◽  
Jianhua Liu

In order to support semantic inter-operability in many domains through disparate ontologies, we need to identify correspondences between the entities across different ontologies, which is commonly known as ontology matching. One of the challenges in ontology matching domain is how to select weights and thresholds in the ontology aligning process to aggregate the various similarity measures to obtain a satisfactory alignment, so called ontology meta-matching problem. Nowadays, the most suitable methodology to address the ontology meta-matching problem is through Evolutionary Algorithm (EA), and the Multi-Objective Evolutionary Algorithms (MOEA) based approaches are emerging as a new efficient methodology to face the meta-matching problem. Moreover, for dynamic applications, it is necessary to perform the system self-tuning process at runtime, and thus, efficiency of the configuration search strategies becomes critical. To this end, in this paper, we propose a problem-specific compact Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), in the whole ontology matching process of ontology meta-matching system, to optimize the ontology alignment. The experimental results show that our proposal is able to highly reduce the execution time and main memory consumption of determining the optimal alignments through MOEA/D based approach by 58.96% and 67.60% on average, respectively, and the quality of the alignments obtained is better than the state of the art ontology matching systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hai Zhu ◽  
Xingsi Xue ◽  
Aifeng Geng ◽  
He Ren

In recent years, innovative positioning and mobile communication techniques have been developing to achieve Location-Based Services (LBSs). With the help of sensors, LBS is able to detect and sense the information from the outside world to provide location-related services. To implement the intelligent LBS, it is necessary to develop the Semantic Sensor Web (SSW), which makes use of the sensor ontologies to implement the sensor data interoperability, information sharing, and knowledge fusion among intelligence systems. Due to the subjectivity of sensor ontology engineers, the heterogeneity problem is introduced, which hampers the communications among these sensor ontologies. To address this problem, sensor ontology matching is introduced to establish the corresponding relationship between different sensor terms. Among all ontology matching technologies, Particle Swarm Optimization (PSO) can represent a contributing method to deal with the low-quality ontology alignment problem. For the purpose of further enhancing the quality of matching results, in our work, sensor ontology matching is modeled as the meta-matching problem firstly, and then based on this model, aiming at various similarity measures, a Simulated Annealing PSO (SAPSO) is proposed to optimize their aggregation weights and the threshold. In particular, the approximate evaluation metrics for evaluating quality of alignment without reference are proposed, and a Simulated Annealing (SA) strategy is applied to PSO’s evolving process, which is able to help the algorithm avoid the local optima and enhance the quality of solution. The well-known Ontology Alignment Evaluation Initiative’s benchmark (OAEI’s benchmark) and three real sensor ontologies are used to verify the effectiveness of SAPSO. The experimental results show that SAPSO is able to effectively match the sensor ontologies.


2021 ◽  
Vol 32 (4) ◽  
pp. 14-27
Author(s):  
Xingsi Xue ◽  
Chao Jiang ◽  
Jie Zhang ◽  
Cong Hu

Biomedical ontology formally defines the biomedical entities and their relationships. However, the same biomedical entity in different biomedical ontologies might be defined in diverse contexts, resulting in the problem of biomedicine semantic heterogeneity. It is necessary to determine the mappings between heterogeneous biomedical entities to bridge the semantic gap, which is the so-called biomedical ontology matching. Due to the plentiful semantic meaning and flexible representation of biomedical entities, the biomedical ontology matching problem is still an open challenge in terms of the alignment's quality. To face this challenge, in this work, the biomedical ontology matching problem is deemed as a binary classification problem, and an attention-based bidirectional long short-term memory network (At-BLSTM)-based ontology matching technique is presented to address it, which is able to capture the semantic and contextual feature of biomedical entities. In the experiment, the comparisons with state-of-the-art approaches show the effectiveness of the proposal.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiali Li ◽  
Zhengyu Lv ◽  
Licheng Wu ◽  
Yue Zhao ◽  
Xiaona Xu

In this study, hybrid state-action-reward-state-action (SARSAλ) and Q-learning algorithms are applied to different stages of an upper confidence bound applied to tree search for Tibetan Jiu chess. Q-learning is also used to update all the nodes on the search path when each game ends. A learning strategy that uses SARSAλ and Q-learning algorithms combining domain knowledge for a feedback function for layout and battle stages is proposed. An improved deep neural network based on ResNet18 is used for self-play training. Experimental results show that hybrid online and offline reinforcement learning with a deep neural network can improve the game program’s learning efficiency and understanding ability for Tibetan Jiu chess.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yikun Huang ◽  
Xingsi Xue ◽  
Chao Jiang

Over the past decades, a large number of complex optimization problems have been widely addressed through multiobjective evolutionary algorithms (MOEAs), and the knee solutions of the Pareto front (PF) are most likely to be fitting for the decision maker (DM) without any user preferences. This work investigates the ontology matching problem, which is a challenge in the semantic web (SW) domain. Due to the complex heterogeneity between two different ontologies, it is arduous to get an excellent alignment that meets all DMs’ demands. To this end, a popular MOEA, i.e., nondominated sorting genetic algorithm (NSGA-II), is investigated to address the ontology matching problem, which outputs the knee solutions in the PF to meet diverse DMs’ requirements. In this study, for further enhancing the performance of NSGA-II, we propose to incorporate into NSGA-II’s evolutionary process the monkey king evolution algorithm (MKE) as the local search algorithm. The improved NSGA-II (iNSGA-II) is able to better converge to the real Pareto optimum region and ameliorate the quality of the solution. The experiment uses the famous benchmark given by the ontology alignment evaluation initiative (OAEI) to assess the performance of iNSGA-II, and the experiment results present that iNSGA-II is able to seek out preferable alignments than OAEI’s participators and NSGA-II-based ontology matching technique.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xingsi Xue ◽  
Xiaojing Wu ◽  
Junfeng Chen

Nowadays, most real-world decision problems consist of two or more incommensurable or conflicting objectives to be optimized simultaneously, so-called multiobjective optimization problems (MOPs). Usually, a decision maker (DM) prefers only a single optimum solution in the Pareto front (PF), and the PF’s knee solution is logically the one if there are no user-specific or problem-specific preferences. In this context, the biomedical ontology matching problem in the Semantic Web (SW) domain is investigated, which can be of help to integrate the biomedical knowledge and facilitate the translational discoveries. Since biomedical ontologies often own large-scale concepts with rich semantic meanings, it is difficult to find a perfect alignment that could meet all DM’s requirements, and usually, the matching process needs to trade-off two conflict objectives, i.e., the alignment’s recall and precision. To this end, in this work, the biomedical ontology matching problem is first defined as a MOP, and then a compact multiobjective particle swarm optimization algorithm driven by knee solution (CMPSO-K) is proposed to address it. In particular, a compact evolutionary mechanism is proposed to efficiently optimize the alignment’s quality, and a max-min approach is used to determine the PF’s knee solution. In the experiment, three biomedical tracks provided by Ontology Alignment Evaluation Initiative (OAEI) are used to test CMPSO-K’s performance. The comparisons with OAEI’s participants and PSO-based matching technique show that CMPSO-K is both effective and efficient.


2018 ◽  
Vol 9 (2) ◽  
pp. 1-14 ◽  
Author(s):  
Xingsi Xue ◽  
Junfeng Chen

This article describes how with the advent of sensors for collecting environmental data, many sensor ontologies have been developed. However, the heterogeneity of sensor ontologies blocks semantic interoperability between them and limits their applications. Ontology matching is an effective technique to solve the problem of sensor ontology heterogeneity. To improve the quality of sensor ontology alignment, the authors propose a semiautomatic ontology matching technique based on a preference-based multi-objective evolutionary algorithm (PMOEA), which can utilize the user's knowledge of the solution's quality to direct MOEA to effectively match the heterogeneous sensor ontologies. The authors specifically construct a new multi-objective optimal model for the sensor ontology matching problem, propose a user preference-based t-dominance rule, and design a PMOEA to solve the sensor ontology matching problem. The experimental results show that their approach can significantly improve the sensor ontology alignment's quality under different heterogeneous situations.


Sign in / Sign up

Export Citation Format

Share Document