scholarly journals Using a genetic algorithm to find molecules with good docking scores

2021 ◽  
Vol 3 ◽  
pp. e18
Author(s):  
Casper Steinmann ◽  
Jan H. Jensen

A graph-based genetic algorithm (GA) is used to identify molecules (ligands) with high absolute docking scores as estimated by the Glide software package, starting from randomly chosen molecules from the ZINC database, for four different targets: Bacillus subtilis chorismate mutase (CM), human β2-adrenergic G protein-coupled receptor (β2AR), the DDR1 kinase domain (DDR1), and β-cyclodextrin (BCD). By the combined use of functional group filters and a score modifier based on a heuristic synthetic accessibility (SA) score our approach identifies between ca 500 and 6,000 structurally diverse molecules with scores better than known binders by screening a total of 400,000 molecules starting from 8,000 randomly selected molecules from the ZINC database. Screening 250,000 molecules from the ZINC database identifies significantly more molecules with better docking scores than known binders, with the exception of CM, where the conventional screening approach only identifies 60 compounds compared to 511 with GA+Filter+SA. In the case of β2AR and DDR1, the GA+Filter+SA approach finds significantly more molecules with docking scores lower than −9.0 and −10.0. The GA+Filters+SA docking methodology is thus effective in generating a large and diverse set of synthetically accessible molecules with very good docking scores for a particular target. An early incarnation of the GA+Filter+SA approach was used to identify potential binders to the COVID-19 main protease and submitted to the early stages of the COVID Moonshot project, a crowd-sourced initiative to accelerate the development of a COVID antiviral.

2021 ◽  
Author(s):  
Casper Steinmann ◽  
Jan H. Jensen

A graph-based genetic algorithm (GA) is used to identify molecules (ligands) with high absolute docking scores as estimated by the Glide software, starting from randomly chosen molecules from the ZINC database, for four different targets: <i>Bacillus subtilis </i>chorismate mutase (CM), human β<sub>2</sub>-adrenergic G protein-coupled receptor (β<sub>2</sub>AR), the DDR1 kinase domain (DDR1), and β-cyclodextrin (BCD). By the combined use of functional group filters and a score modifier based on a heuristic synthetic accessibility (SA) score our approach identifies between ca 500 and 6000 structurally diverse molecules with scores better than known binders by screening a total of 400,000 molecules starting from 8000 randomly selected molecules from the ZINC database. Screening 250,000 molecules from the ZINC database identifies significantly more molecules with better docking scores than known binders, with the exception of CM, where the conventional screening approach only identifies 60 compounds compared to 511 with GA+Filter+SA. In the case of β<sub>2</sub>AR and DDR1 the GA+Filter+SA approach finds significantly more molecules with docking scores lower than -9.0 and -10.0. The GA+Filters+SA docking methodology is thus effective in generating a large and diverse set of synthetically accessible molecules with very good docking scores for a particular target. An early incarnation of the GA+Filter+SA approach was used to identify potential binders to the COVID-19 main protease and submitted to the early stages of the COVID Moonshot project, a crowd-sourced initiative to accelerate the development of a COVID antiviral.


2021 ◽  
Author(s):  
Casper Steinmann ◽  
Jan H. Jensen

A graph-based genetic algorithm (GA) is used to identify molecules (ligands) with high absolute docking scores as estimated by the Glide software, starting from randomly chosen molecules from the ZINC database, for four different targets: <i>Bacillus subtilis </i>chorismate mutase (CM), human β<sub>2</sub>-adrenergic G protein-coupled receptor (β<sub>2</sub>AR), the DDR1 kinase domain (DDR1), and β-cyclodextrin (BCD). By the combined use of functional group filters and a score modifier based on a heuristic synthetic accessibility (SA) score our approach identifies between ca 500 and 6000 structurally diverse molecules with scores better than known binders by screening a total of 400,000 molecules starting from 8000 randomly selected molecules from the ZINC database. Screening 250,000 molecules from the ZINC database identifies significantly more molecules with better docking scores than known binders, with the exception of CM, where the conventional screening approach only identifies 72 compounds compared to 511 with GA+Filter+SA. In the case of β<sub>2</sub>AR and DDR1 the GA+Filter+SA approach finds significantly more molecules with docking scores lower than -9.0 and -10.0. The GA+Filters+SA docking methodology is thus effective in generating a large and diverse set of synthetically accessible molecules with very good docking scores for a particular target. An early incarnation of the GA+Filter+SA approach was used to identify potential binders to the COVID-19 main protease and submitted to the early stages of the COVID Moonshot project, a crowd-sourced initiative to accelerate the development of a COVID antiviral.


2021 ◽  
Author(s):  
Casper Steinmann ◽  
Jan H. Jensen

A graph-based genetic algorithm (GA) is used to identify molecules (ligands) with high absolute docking scores as estimated by the Glide software, starting from randomly chosen molecules from the ZINC database, for four different targets: <i>Bacillus subtilis </i>chorismate mutase (CM), human β<sub>2</sub>-adrenergic G protein-coupled receptor (β<sub>2</sub>AR), the DDR1 kinase domain (DDR1), and β-cyclodextrin (BCD). By the combined use of functional group filters and a score modifier based on a heuristic synthetic accessibility (SA) score our approach identifies between ca 500 and 6000 structurally diverse molecules with scores better than known binders by screening a total of 400,000 molecules starting from 8000 randomly selected molecules from the ZINC database. Screening 250,000 molecules from the ZINC database identifies significantly more molecules with better docking scores than known binders, with the exception of CM, where the conventional screening approach only identifies 72 compounds compared to 511 with GA+Filter+SA. In the case of β<sub>2</sub>AR and DDR1 the GA+Filter+SA approach finds significantly more molecules with docking scores lower than -9.0 and -10.0. The GA+Filters+SA docking methodology is thus effective in generating a large and diverse set of synthetically accessible molecules with very good docking scores for a particular target. An early incarnation of the GA+Filter+SA approach was used to identify potential binders to the COVID-19 main protease and submitted to the early stages of the COVID Moonshot project, a crowd-sourced initiative to accelerate the development of a COVID antiviral.


2019 ◽  
Vol 10 (12) ◽  
pp. 3567-3572 ◽  
Author(s):  
Jan H. Jensen

This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property.


2021 ◽  
Vol 51 (3) ◽  
pp. 994-1006
Author(s):  
Kelly Jensen ◽  
◽  
Sassan Noazin ◽  
Leandra Bitterfeld ◽  
Andrea Carcelen ◽  
...  

AbstractMost children with autism spectrum disorder (ASD), in resource-limited settings (RLS), are diagnosed after the age of four. Our work confirmed and extended results of Pierce that eye tracking could discriminate between typically developing (TD) children and those with ASD. We demonstrated the initial 15 s was at least as discriminating as the entire video. We evaluated the GP-MCHAT-R, which combines the first 15 s of manually-coded gaze preference (GP) video with M-CHAT-R results on 73 TD children and 28 children with ASD, 36–99 months of age. The GP-MCHAT-R (AUC = 0.89 (95%CI: 0.82–0.95)), performed significantly better than the MCHAT-R (AUC = 0.78 (95%CI: 0.71–0.85)) and gaze preference (AUC = 0.76 (95%CI: 0.64–0.88)) alone. This tool may enable early screening for ASD in RLS.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Jingtian Zhang ◽  
Fuxing Yang ◽  
Xun Weng

Robotic mobile fulfilment system (RMFS) is an efficient and flexible order picking system where robots ship the movable shelves with items to the picking stations. This innovative parts-to-picker system, known as Kiva system, is especially suited for e-commerce fulfilment centres and has been widely used in practice. However, there are lots of resource allocation problems in RMFS. The robots allocation problem of deciding which robot will be allocated to a delivery task has a significant impact on the productivity of the whole system. We model this problem as a resource-constrained project scheduling problem with transfer times (RCPSPTT) based on the accurate analysis of driving and delivering behaviour of robots. A dedicated serial schedule generation scheme and a genetic algorithm using building-blocks-based crossover (BBX) operator are proposed to solve this problem. The designed algorithm can be combined into a dynamic scheduling structure or used as the basis of calculation for other allocation problems. Experiment instances are generated based on the characteristics of RMFS, and the computation results show that the proposed algorithm outperforms the traditional rule-based scheduling method. The BBX operator is rapid and efficient which performs better than several classic and competitive crossover operators.


2018 ◽  
Vol 14 (09) ◽  
pp. 190 ◽  
Author(s):  
Shewangi Kochhar ◽  
Roopali Garg

<p>Cognitive Radio has been skillful technology to improve the spectrum sensing as it enables Cognitive Radio to find Primary User (PU) and let secondary User (SU) to utilize the spectrum holes. However detection of PU leads to longer sensing time and interference. Spectrum sensing is done in specific “time frame” and it is further divided into Sensing time and transmission time. Higher the sensing time better will be detection and lesser will be the probability of false alarm. So optimization technique is highly required to address the issue of trade-off between sensing time and throughput. This paper proposed an application of Genetic Algorithm technique for spectrum sensing in cognitive radio. Here results shows that ROC curve of GA is better than PSO in terms of normalized throughput and sensing time. The parameters that are evaluated are throughput, probability of false alarm, sensing time, cost and iteration.</p>


2012 ◽  
Vol 25 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Rashmi Deka ◽  
Soma Chakraborty ◽  
Sekhar Roy

Spectrum availability is becoming scarce due to the rise of number of users and rapid development in wireless environment. Cognitive radio (CR) is an intelligent radio system which uses its in-built technology to use the vacant spectrum holes for the use of another service provider. In this paper, genetic algorithm (GA) is used for the best possible space allocation to cognitive radio in the spectrum available. For spectrum reuse, two criteria have to be fulfilled - 1) probability of detection has to be maximized, and 2) probability of false alarm should be minimized. It is found that with the help of genetic algorithm the optimized result is better than without using genetic algorithm. It is necessary that the secondary user should vacate the spectrum in use when licensed users are demanding and detecting the primary users accurately by the cognitive radio. Here, bit error rate (BER) is minimized for better spectrum sensing purpose using GA.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032010
Author(s):  
Rong Ma

Abstract The traditional BP neural network is difficult to achieve the target effect in the prediction of waterway cargo turnover. In order to improve the accuracy of waterway cargo turnover forecast, a waterway cargo turnover forecast model was created based on genetic algorithm to optimize neural network parameters. The genetic algorithm overcomes the trap that the general iterative method easily falls into, that is, the “endless loop” phenomenon that occurs when the local minimum is small, and the calculation time is small, and the robustness is high. Using genetic algorithm optimized BP neural network to predict waterway cargo turnover, and the empirical analysis of the waterway cargo turnover forecast is carried out. The results obtained show that the neural network waterway optimized by genetic algorithm has a higher accuracy than the traditional BP neural network for predicting waterway cargo turnover, and the optimization model can long-term analysis of the characteristics of waterway cargo turnover changes shows that the prediction effect is far better than traditional neural networks.


2021 ◽  
Vol 15 ◽  
Author(s):  
Shui-Hua Wang ◽  
Xianwei Jiang ◽  
Yu-Dong Zhang

Aim: Multiple sclerosis (MS) is a disease, which can affect the brain and/or spinal cord, leading to a wide range of potential symptoms. This method aims to propose a novel MS recognition method.Methods: First, the bior4.4 wavelet is used to extract multiscale coefficients. Second, three types of biorthogonal wavelet features are proposed and calculated. Third, fitness-scaled adaptive genetic algorithm (FAGA)—a combination of standard genetic algorithm, adaptive mechanism, and power-rank fitness scaling—is harnessed as the optimization algorithm. Fourth, multiple-way data augmentation is utilized on the training set under the setting of 10 runs of 10-fold cross-validation. Our method is abbreviated as BWF-FAGA.Results: Our method achieves a sensitivity of 98.00 ± 0.95%, a specificity of 97.78 ± 0.95%, and an accuracy of 97.89 ± 0.94%. The area under the curve of our method is 0.9876.Conclusion: The results show that the proposed BWF-FAGA method is better than 10 state-of-the-art MS recognition methods, including eight artificial intelligence-based methods, and two deep learning-based methods.


Sign in / Sign up

Export Citation Format

Share Document