scholarly journals Identification of candidate genes influencing anthocyanin biosynthesis during the development and ripening of red and white strawberry fruits via comparative transcriptome analysis

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10739
Author(s):  
Fengli Zhao ◽  
Pan Song ◽  
Xiangfen Zhang ◽  
Gang Li ◽  
Panpan Hu ◽  
...  

Strawberries are one of the most economically important berry fruits worldwide and exhibit colours ranging from white to dark red, providing a rich genetic resource for strawberry quality improvement. In the present study, we conducted transcriptome analyses of three strawberry cultivars, namely, ‘Benihoppe’, ‘Xiaobai’, and ‘Snow White’, and compared their gene expression profiles. Among the high-quality sequences, 5,049 and 53,200 differentially expressed genes (DEGs) were obtained when comparing the diploid and octoploid strawberry genomes and analysed to identify anthocyanin-related candidate genes. Sixty-five DEGs in the diploid genome (transcriptome data compared to the diploid strawberry genome) and 317 DEGs in the octoploid genome (transcriptome data compared to the octoploid strawberry genome) were identified among the three cultivars. Among these DEGs, 19 and 70 anthocyanin pathway genes, six and 42 sugar pathway genes, 23 and 101 hormone pathway genes, and 17 and 104 transcription factors in the diploid and octoploid genomes, respectively, correlated positively or negatively with the anthocyanin accumulation observed among the three cultivars. Real-time qPCR analysis of nine candidate genes showed a good correlation with the transcriptome data. For example, the expression of PAL was higher in ‘Benihoppe’ and ‘Xiaobai’ than in ‘Snow White’, consistent with the RNA-seq data. Thus, the RNA-seq data and candidate DEGs identified in the present study provide a sound basis for further studies of strawberry fruit colour formation.

2019 ◽  
Author(s):  
Huanhuan Liu ◽  
Jikai Ma ◽  
Huogen Li

Abstract Background Nectar is a major flower attractant and reward for insects for pollination. Liriodendron, a genus of the Magnoliaceae family, has only two relict species, L. chinense and L. tulipifera, that are considered “basal angiosperms” according to plant evolutionary history. The flowers of Liriodendron plants are insect pollinated and secrete nectar to attract pollinators. To date, the morphology and anatomy of the nectary, the mechanism of nectar secretion and the molecular mechanism involved in nectary development in Liriodendron remain poorly understood. Methods In this study, we examined the nectary surface cells and the change in starch in L. tulipifera by using scanning electron microscopy and periodic acid-Schiff techniques to select definitive samples for next research. Transcriptome sequencing was performed on the top and middle parts of the immature nectary and the middle parts of the mature nectary and the postsecreted nectary in L. tulipifera. We evaluated the expression profiles of 22 DEGs that were closely related to nectary development and nectar secretion for real-time quantitative PCR analysis. Results The L. tulipifera nectary is a starch-storing nectary and is located in the top and middle parts of L. tulipifera petals. After analyzing the RNA-seq data, we obtained 115.26 Gb clean data in 12 libraries and mapped the results to the L. chinense reference genome with 71.02%-79.77% efficiency. In total, 26,955 DEGs were identified by analyzing six different pairwise comparisons. The flavonoid biosynthesis, phenylpropanoid biosynthesis, anthocyanin biosynthesis and starch and sucrose metabolism pathways were enriched and related to nectar secretion and pigment change. We identified 56 transcription factor families, and members of the TCP, Trihelix, C2H2, ERF, and MADS families changed dynamically during nectary development. Moreover, to further verify the accuracy of the RNA-seq results, we validated the expression profiles of 22 candidate genes. Conclusions We evaluated the nectary development and secretion process comprehensively and identified many related candidate genes in L. tulipifera. These findings suggest that the nectary may play important roles in flavonoid synthesis and petal color presentation.


2019 ◽  
Author(s):  
Huanhuan Liu ◽  
Jikai Ma ◽  
Huogen Li

Abstract Background: Nectar is a major floral attractant and reward for insects that ensures pollination. Liriodendron, a genus of the Magnoliaceae family, includes only two relict species, L. chinense and L. tulipifera, which are considered “basal angiosperms” according to plant evolutionary history. The flowers of Liriodendron plants are insect pollinated and secrete nectar to attract pollinators. To date, the morphology and anatomy of nectaries, the mechanism of nectar secretion and the molecular mechanism of nectary development in Liriodendron remain poorly understood. Methods: In this study, we examined the nectary surface cells and change in starch in L. tulipifera by using scanning electron microscopy and periodic acid-Schiff techniques to select appropriate samples for subsequent research. Transcriptome sequencing was of the top and middle parts of immature nectaries and the middle part of mature and postsecretory nectaries in L. tulipifera was performed. We evaluated the expression profiles of 21 DEGs that are closely related to nectary development and nectar secretion for real-time quantitative PCR analysis. Results: L. tulipifera nectaries are starch-storing nectaries and are located in the top and middle parts of L. tulipifera petals. After analyzing the RNA-seq data, we obtained 115.26 Gb of clean data in 12 libraries and mapped the results to the L. chinense reference genome with 71.02%-79.77% efficiency. In total, 26,955 DEGs were identified by performing six pairwise comparisons. The flavonoid biosynthesis, phenylpropanoid biosynthesis, anthocyanin biosynthesis and starch and sucrose metabolism pathways were enriched and related to nectar secretion and pigment change. We identified 56 transcription factor families, and members of the TCP, Trihelix, C2H2, ERF, and MADS families changed dynamically during nectary development. Moreover, to further verify the accuracy of the RNA-seq results, we validated the expression profiles of 21 candidate genes. Conclusions: We evaluated the nectary development and secretion processes comprehensively and identified many related candidate genes in L. tulipifera. These findings suggest that nectaries play important roles in flavonoid synthesis and petal color presentation.


Biomedicines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Hidemasa Bono ◽  
Kiichi Hirota

Hypoxia is the insufficiency of oxygen in the cell, and hypoxia-inducible factors (HIFs) are central regulators of oxygen homeostasis. In order to obtain functional insights into the hypoxic response in a data-driven way, we attempted a meta-analysis of the RNA-seq data from the hypoxic transcriptomes archived in public databases. In view of methodological variability of archived data in the databases, we first manually curated RNA-seq data from appropriate pairs of transcriptomes before and after hypoxic stress. These included 128 human and 52 murine transcriptome pairs. We classified the results of experiments for each gene into three categories: upregulated, downregulated, and unchanged. Hypoxic transcriptomes were then compared between humans and mice to identify common hypoxia-responsive genes. In addition, meta-analyzed hypoxic transcriptome data were integrated with public ChIP-seq data on the known human HIFs, HIF-1 and HIF-2, to provide insights into hypoxia-responsive pathways involving direct transcription factor binding. This study provides a useful resource for hypoxia research. It also demonstrates the potential of a meta-analysis approach to public gene expression databases for selecting candidate genes from gene expression profiles generated under various experimental conditions.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Huanhuan Liu ◽  
Jikai Ma ◽  
Huogen Li

Abstract Background Nectar is a major floral attractant and reward for insects that ensures pollination. Liriodendron, a genus of the Magnoliaceae family, includes only two relict species, L. chinense and L. tulipifera, which are considered “basal angiosperms” according to plant evolutionary history. The flowers of Liriodendron plants are insect pollinated and secrete nectar to attract pollinators. To date, the morphology and anatomy of nectaries, the mechanism of nectar secretion and the molecular mechanism of nectary development in Liriodendron remain poorly understood. Methods In this study, we examined the nectary surface cells and change in starch in L. tulipifera by using scanning electron microscopy and periodic acid-Schiff techniques to select appropriate samples for subsequent research. Transcriptome sequencing was of the top and middle parts of immature nectaries and the middle part of mature and postsecretory nectaries in L. tulipifera was performed. We evaluated the expression profiles of 21 DEGs that are closely related to nectary development and nectar secretion for real-time quantitative PCR analysis. Results L. tulipifera nectaries are starch-storing nectaries and are located in the top and middle parts of L. tulipifera petals. After analyzing the RNA-seq data, we obtained 115.26 Gb of clean data in 12 libraries and mapped the results to the L. chinense reference genome with 71.02–79.77% efficiency. In total, 26,955 DEGs were identified by performing six pairwise comparisons. The flavonoid biosynthesis, phenylpropanoid biosynthesis, anthocyanin biosynthesis and starch and sucrose metabolism pathways were enriched and related to nectar secretion and pigment change. We identified 56 transcription factor families, and members of the TCP, Trihelix, C2H2, ERF, and MADS families changed dynamically during nectary development. Moreover, to further verify the accuracy of the RNA-seq results, we validated the expression profiles of 21 candidate genes. Conclusions We evaluated the nectary development and secretion processes comprehensively and identified many related candidate genes in L. tulipifera. These findings suggest that nectaries play important roles in flavonoid synthesis and petal color presentation.


2018 ◽  
Author(s):  
Hidemasa Bono ◽  
Kiichi Hirota

AbstractHypoxia is the insufficiency of oxygen in the cell, and hypoxia-inducible factors (HIFs) are central regulators of oxygen homeostasis. In order to obtain functional insights into the hypoxic response in a data-driven way, we attempted a meta-analysis of the RNA-seq data from the hypoxic transcriptomes archived in public databases. In view of methodological variability of archived data in the databases, we first manually curated RNA-seq data from appropriate pairs of transcriptomes before and after hypoxic stress. These included 128 human and 52 murine transcriptome pairs. We classified the results of experiments for each gene into three categories: upregulated, downregulated, and unchanged. Hypoxic transcriptomes were then compared between humans and mice to identify common hypoxia-responsive genes. In addition, meta-analyzed hypoxic transcriptome data were integrated with public ChIP-seq data on the known human HIFs HIF-1 and HIF-2 to provide insights into hypoxia-responsive pathways involving direct transcription factor binding. This study provides a useful resource for hypoxia research. It also demonstrates the potential of a meta-analysis approach to public gene expression databases for selecting candidate genes from gene expression profiles generated under various experimental conditions.


2021 ◽  
pp. 1-19
Author(s):  
Huixin Gang ◽  
Qian Zhang ◽  
Jing Chen ◽  
Dong Qin ◽  
Junwei Huo

BACKGROUND: R2R3-MYB transcription factor (TF) family plays important roles in various biological processes in many plants, especially in the regulation of plant flavonoid accumulation. The fruit of Lonicera caerulea contains abundant anthocyanin. OBJECTIVE: The R2R3-MYB TF family was systematically analyzed according to the RNA-seq data, and the R2R3-MYB candidate genes that were involved in anthocyanin biosynthesis in the fruit of Lonicera caerulea were screened. METHODS: The R2R3-MYB TFs in Lonicera caerulea were identified, and the physical and chemical properties, protein conserved sequence alignment and motifs of each R2R3-MYB TFs were analyzed using bioinformatics methods. The expression levels of these genes and anthocyanin levels in different tissues and different developmental stages of fruit were determined by RT-qPCR and pH shift method. RESULTS: A total of 59 genes encoding R2R3-MYB TFs in Lonicera caerulea were identified and clustered into 20 subgroups (C1 to C20) based on the relationship to AtR2R3-MYBs. Expression profiles showed that the expression of CL6086 and CL552 in fruit were higher than other tissues, and upregulated in the veraison fruit compared to the green ripe fruit. As the expression of the two genes was concurrent with the anthocyanin content, and showed high correlation with anthocyanin biosynthetic structural genes, they were considered as closely related to anthocyanin biosynthesis in the fruit. CONCLUSION: The results provide a systematic analysis of LcR2R3-MYBs, and the foundation for further molecular mechanisms research of anthocyanin biosynthesis regulated by R2R3-MYB in the fruit of Lonicera caerulea.


2019 ◽  
Author(s):  
Huanhuan Liu ◽  
Jikai Ma ◽  
Huogen Li

Abstract Background Nectar is a major flower attractant and reward for insects for pollination. Liriodendron , a genus of the Magnoliaceae family, has only two relict species, L. chinense and L. tulipifera , that are considered “basal angiosperms” according to plant evolutionary history. The flowers of Liriodendron plants are insect pollinated and secrete nectar to attract pollinators. To date, the morphology and anatomy of the nectary, the mechanism of nectar secretion and the molecular mechanism involved in nectary development in Liriodendron remain poorly understood. Methods In this study, we examined the nectary surface cells and the change in starch in L. tulipifera by using scanning electron microscopy and periodic acid-Schiff techniques to select definitive samples for next research. Transcriptome sequencing was performed on the top and middle parts of the immature nectary and the middle parts of the mature nectary and the postsecreted nectary in L. tulipifera . We evaluated the expression profiles of 21 DEGs that were closely related to nectary development and nectar secretion for real-time quantitative PCR analysis. Results The L. tulipifera nectary is a starch-storing nectary and is located in the top and middle parts of L . tulipifera petals. After analyzing the RNA-seq data, we obtained 115.26 Gb clean data in 12 libraries and mapped the results to the L. chinense reference genome with 71.02%-79.77% efficiency. In total, 26,955 DEGs were identified by analyzing six different pairwise comparisons. The flavonoid biosynthesis, phenylpropanoid biosynthesis, anthocyanin biosynthesis and starch and sucrose metabolism pathways were enriched and related to nectar secretion and pigment change. We identified 56 transcription factor families, and members of the TCP, Trihelix, C2H2, ERF, and MADS families changed dynamically during nectary development. Moreover, to further verify the accuracy of the RNA-seq results, we validated the expression profiles of 21 candidate genes. Conclusions We evaluated the nectary development and secretion process comprehensively and identified many related candidate genes in L. tulipifera . These findings suggest that the nectary may play important roles in flavonoid synthesis and petal color presentation.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 500
Author(s):  
Jeeyong Lee ◽  
Junhye Kwon ◽  
DaYeon Kim ◽  
Misun Park ◽  
KwangSeok Kim ◽  
...  

LARC patients were sorted according to their radio-responsiveness and patient-derived organoids were established from the respective cancer tissues. Expression profiles for each group were obtained using RNA-seq. Biological and bioinformatic analysis approaches were used in deciphering genes and pathways that participate in the radio-resistance of LARC. Thirty candidate genes encoding proteins involved in radio-responsiveness–related pathways, including the immune system, DNA repair and cell-cycle control, were identified. Interestingly, one of the candidate genes, cathepsin E (CTSE), exhibited differential methylation at the promoter region that was inversely correlated with the radio-resistance of patient-derived organoids, suggesting that methylation status could contribute to radio-responsiveness. On the basis of these results, we plan to pursue development of a gene chip for diagnosing the radio-responsiveness of LARC patients, with the hope that our efforts will ultimately improve the prognosis of LARC patients.


2021 ◽  
Author(s):  
Taguchi Y-h. ◽  
Turki Turki

Abstract The integrated analysis of multiple gene expression profiles measured in distinct studies is always problematic. Especially, missing sample matching and missing common labeling between distinct studies prevent the integration of multiple studies in fully data-driven and unsupervised manner. In this study, we propose a strategy enabling the integration of multiple gene expression profiles among multiple independent studies without either labeling or sample matching, using tensor decomposition-based unsupervised feature extraction. As an example, we applied this strategy to Alzheimer’s disease (AD)-related gene expression profiles that lack exact correspondence among samples as well as AD single-cell RNA-seq (scRNA-seq) data. We found that we could select biologically reasonable genes with integrated analysis. Overall, integrated gene expression profiles can function analogously to prior learning and/or transfer learning strategies in other machine learning applications. For scRNA-seq, the proposed approach was able to drastically reduce the required computational memory.


Sign in / Sign up

Export Citation Format

Share Document