scholarly journals ezRAD: a simplified method for genomic genotyping in non-model organisms

PeerJ ◽  
2013 ◽  
Vol 1 ◽  
pp. e203 ◽  
Author(s):  
Robert J. Toonen ◽  
Jonathan B. Puritz ◽  
Zac H. Forsman ◽  
Jonathan L. Whitney ◽  
Iria Fernandez-Silva ◽  
...  
2021 ◽  
Author(s):  
not provided Vu ◽  
Bird, C. ◽  
Truong, T. O. ◽  
Tran, Q.S. ◽  
Tran, T. L. ◽  
...  

This protocol describes the methodologies used for DNA extraction, quantification, restriction digestion, and make libraries from non-model organisms following Toonen el al. (2013). Toonen, R. J., Puritz, J. B., Forsman, Z. H., Whitney, J. L., Fernandez-Silva, I., Andrews, K. R., et al. (2013). ezRAD: a simplified method for genomic genotyping in non-model organisms. PeerJ 1, e203. doi:10.7717/peerj.203.


2019 ◽  
Vol 42 ◽  
Author(s):  
Nicole M. Baran

AbstractReductionist thinking in neuroscience is manifest in the widespread use of animal models of neuropsychiatric disorders. Broader investigations of diverse behaviors in non-model organisms and longer-term study of the mechanisms of plasticity will yield fundamental insights into the neurobiological, developmental, genetic, and environmental factors contributing to the “massively multifactorial system networks” which go awry in mental disorders.


Author(s):  
K. Yoshida ◽  
F. Murata ◽  
S. Ohno ◽  
T. Nagata

IntroductionSeveral methods of mounting emulsion for radioautography at the electron microscopic level have been reported. From the viewpoint of quantitative radioautography, however, there are many critical problems in the procedure to produce radioautographs. For example, it is necessary to apply and develop emulsions in several experimental groups under an identical condition. Moreover, it is necessary to treat a lot of grids at the same time in the dark room for statistical analysis. Since the complicated process and technical difficulties in these procedures are inadequate to conduct a quantitative analysis of many radioautographs at once, many factors may bring about unexpected results. In order to improve these complicated procedures, a simplified dropping method for mass production of radioautographs under an identical condition was previously reported. However, this procedure was not completely satisfactory from the viewpoint of emulsion homogeneity. This paper reports another improved procedure employing wire loops.


Author(s):  
Yeshayahu Talmon

To bring out details in the fractured surface of a frozen sample in the freeze fracture/freeze-etch technique,the sample or part of it is warmed to enhance water sublimation.One way to do this is to raise the temperature of the entire sample to about -100°C to -90°C. In this case sublimation rates can be calculated by using plots such as Fig.1 (Talmon and Thomas),or by simplified formulae such as that given by Menold and Liittge. To achieve higher rates of sublimation without heating the entire sample a radiative heater can be used (Echlin et al.). In the present paper a simplified method for the calculation of the rates of sublimation under a constant heat flux F [W/m2] at the surface of the sample from a heater placed directly above the sample is described.


2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


2005 ◽  
Vol 173 (4S) ◽  
pp. 140-141
Author(s):  
Mariana Lima ◽  
Celso D. Ramos ◽  
Sérgio Q. Brunetto ◽  
Marcelo Lopes de Lima ◽  
Carla R.M. Sansana ◽  
...  

2006 ◽  
Vol 45 (03) ◽  
pp. 134-138 ◽  
Author(s):  
T. Kull ◽  
N. M. Blumstein ◽  
D. Bunjes ◽  
B. Neumaier ◽  
A. K. Buck ◽  
...  

SummaryAim: For the therapeutic application of radiopharmaceuticals the activity is determined on an individual basis. Here we investigated the accuracy for a simplified assessment of the residence times for a 188Re-labelled anti-CD66 monoclonal antibody. Patients, methods: For 49 patients with high risk leukaemia (24 men, 25 women, age: 44 ± 12 years) the residence times were determined for the injected 188Re-labelled anti-CD66 antibodies (1.3 ± 0.4 GBq, 5–7 GBq/mg protein, >95% 188Re bound to the antibody) based on 5 measurements (1.5, 3, 20, 26, and 44 h p.i.) using planar conjugate view gamma camera images (complete method). In a simplified method the residence times were calculated based on a single measurement 3 h p.i. Results: The residence times for kidneys, liver, red bone marrow, spleen and remainder of body for the complete method were 0.4 ± 0.2 h, 1.9 ± 0.8 h, 7.8 ± 2.1 h, 0.6 ± 0.3 h and 8.6 ± 2.1 h, respectively. For all organs a linear correlation exists between the residence times of the complete method and the simplified method with the slopes (correlation coefficients R > 0.89) of 0.89, 0.99, 1.23, 1.13 and 1.09 for kidneys, liver, red bone marrow, spleen and remainder of body, respectively. Conclusion: The proposed approach allows reliable prediction of biokinetics of 188Re-labelled anti-CD66 monoclonal antibody biodistribution with a single study. Efficient pretherapeutic estimation of organ absorbed dose may be possible, provided that a more stable anti-CD66 antibody preparation is available.


Sign in / Sign up

Export Citation Format

Share Document