scholarly journals Mitochondrial genomes of three Tetrigoidea species and phylogeny of Tetrigoidea

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4002 ◽  
Author(s):  
Li-Liang Lin ◽  
Xue-Juan Li ◽  
Hong-Li Zhang ◽  
Zhe-Min Zheng

The mitochondrial genomes (mitogenomes) of Formosatettix qinlingensis, Coptotettix longjiangensis and Thoradonta obtusilobata (Orthoptera: Caelifera: Tetrigoidea) were sequenced in this study, and almost the entire mitogenomes of these species were determined. The mitogenome sequences obtained for the three species were 15,180, 14,495 and 14,538 bp in length, respectively, and each sequence included 13 protein-coding genes (PCGs), partial sequences of rRNA genes (rRNAs), tRNA genes (tRNAs) and a A + T-rich region. The order and orientation of the gene arrangement pattern were identical to that of most Tetrigoidea species. Some conserved spacer sequences between trnS(UCN) and nad1 were useful to identify Tetrigoidea and Acridoidea. The Ka/Ks value of atp8 between Trachytettix bufo and other four Tetrigoidea species indicated that some varied sites in this gene might be related with the evolution of T. bufo. The three Tetrigoidea species were compared with other Caelifera. At the superfamily level, conserved sequences were observed in intergenic spacers, which can be used for superfamily level identification between Tetrigoidea and Acridoidea. Furthermore, a phylogenomic analysis was conducted based on the concatenated data sets from mitogenome sequences of 24 species of Orthoptera in the superorders Caelifera and Ensifera. Both maximum likelihood and bayesian inference analyses strongly supported Acridoidea and Tetrigoidea as forming monophyletic groups. The relationships among six Tetrigoidea species were (((((Tetrix japonica, Alulatettix yunnanensis), Formosatettix qinlingensis), Coptotettix longjiangensis), Trachytettix bufo), Thoradonta obtusilobata).

Parasitology ◽  
2006 ◽  
Vol 134 (5) ◽  
pp. 739-747 ◽  
Author(s):  
T. HUYSE ◽  
L. PLAISANCE ◽  
B. L. WEBSTER ◽  
T. A. MO ◽  
T. A. BAKKE ◽  
...  

SUMMARYIn the present study, we describe the complete mitochondrial (mt) genome of the Atlantic salmon parasite Gyrodactylus salaris, the first for any monogenean species. The circular genome is 14 790 bp in size. All of the 35 genes recognized from other flatworm mitochondrial genomes were identified, and they are transcribed from the same strand. The protein-coding and ribosomal RNA (rRNA) genes share the same gene arrangement as those published previously for neodermatan mt genomes (representing cestodes and digeneans only), and the genome has an overall A+T content of 65%. Three transfer RNA (tRNA) genes overlap with other genes, whereas the secondary structure of 3 tRNA genes lack the DHU arm and 1 tRNA gene lacks the TΨC arm. Eighteen regions of non-coding DNA ranging from 4 to 112 bp in length, totalling 278 bp, were identified as well as 2 large non-coding regions (799 bp and 768 bp) that were almost identical to each other. The completion of the mt genome offers the opportunity of defining new molecular markers for studying evolutionary relationships within and among gyrodactylid species.


2020 ◽  
Author(s):  
Guohong Cai ◽  
Steven R. Scofield

ABSTRACTPhytophthora sansomeana infects soybean and causes root rot. It was recently separated from the species complex P. megasperma sensu lato. In this study, we sequenced and annotated its complete mitochondrial genome and compared it to that of nine other Phytophthora species. The genome was assembled into a circular molecule of 39,618 bp with a 22.03% G+C content. Forty-two protein coding genes, 25 tRNA genes and two rRNA genes were annotated in this genome. The protein coding genes include 14 genes in the respiratory complexes, four ATP synthetase genes, 16 ribosomal proteins genes, a tatC translocase gene, six conserved ORFs and a unique orf402. The tRNA genes encode tRNAs for 19 amino acids. Comparison among mitochondrial genomes of 10 Phytophthora species revealed three inversions, each covering multiple genes. These genomes were conserved in gene content with few exceptions. A 3’ truncated atp9 gene was found in P. nicotianae. All 10 Phytophthora species, as well as other oomycetes and stramenopiles, lacked tRNA genes for threonine in their mitochondria. Phylogenomic analysis using the mitochondrial genomes supported or enhanced previous findings of the phylogeny of Phytophthora spp.


ZooKeys ◽  
2019 ◽  
Vol 835 ◽  
pp. 43-63 ◽  
Author(s):  
Jin–Jun Cao ◽  
Ying Wang ◽  
Yao–Rui Huang ◽  
Wei–Hai Li

In this study, two new mitochondrial genomes (mitogenomes) ofMesonemourametafiligeraandMesonemouratritaeniafrom the family Nemouridae (Insecta: Plecoptera) were sequenced. TheMesonemourametafiligeramitogenome was a 15,739 bp circular DNA molecule, which was smaller than that ofM.tritaenia(15,778 bp) due to differences in the size of the A+T-rich region. Results show that gene content, gene arrangement, base composition, and codon usage were highly conserved in two species. Ka/Ks ratios analyses of protein-coding genes revealed that the highest and lowest rates were found in ND6 and COI and that all these genes were evolving under purifying selection. All tRNA genes in nemourid mitogenomes had a typical cloverleaf secondary structure, except for tRNASer(AGN)which appeared to lack the dihydrouridine arm. The multiple alignments of nemourid lrRNA and srRNA genes showed that sequences of three species were highly conserved. All the A+T-rich region included tandem repeats regions and stem-loop structures. The phylogenetic analyses using Bayesian inference (BI) and maximum likelihood methods (ML) generated identical results. Amphinemurinae and Nemourinae were sister-groups and the family Nemouridae was placed as sister to Capniidae and Taeniopterygidae.


2020 ◽  
Author(s):  
Yu Fang ◽  
Jiaoyang Xu ◽  
Xuebing Zhan ◽  
Weixi Fang ◽  
Fangyuan Dong ◽  
...  

Abstract Background Mitochondrial genomes (mitogenomes) of metazoans typically contain 37 genes, comprising 13 protein-coding genes, two rRNA genes, and 22 tRNA genes. To date, complete mitogenome sequences of 15 species of Astigmatina are available, and they present variation in a number of features, such as gene arrangements, tRNA unconventional secondary structures, and the number and internal structures of control regions. Furthermore, 11 astigmatid mites from six superfamilies share the same gene arrangement. Two available species from the genus Histiostoma reportedly have different mitochondrial (mt) tRNA gene arrangements. Results We sequenced the mitogenomes of Lepidoglyphus destructor and Gohieria fusca, both from the superfamily Glycyphagoidea (Astigmatina). In total, 37 mt genes were identified in the two Glycyphagoidea species. Based on AT content and stem-loop structures, we divided the largest non-coding regions (LNRs) in L. destructor and G. fusca into two domains, respectively. The novel feature of two domains for the LNR was also found in Acalvolia sp. (Astigmatina, Hemisarcoptoidea). Using MITOS 2, tRNAScan, ARWEN, and manual approaches, we reannotated the mitogenomes of Histiostoma blomquisti, H. feroniarum, and Trouessartia rubecula. We reannotated six tRNA genes in H. blomquisti and four tRNA genes in H. feroniarum. We were able to identify all of the mt tRNA genes that were reported as lost in Tr. rubecula. The phylogenetic relationships found in our study were fairly consistent with previous studies of astigmatid mites phylogeny. Within Astigmatina, Glycyphagoidea was recovered as a monophyletic group. Conclusions A novel feature of the LNR was found in L. destructor, G. fusca and Acalvolia sp. (Astigmatina, Hemisarcoptoidea). This feature was not found in other available Astigmatina mitochondrial sequences. In the current study, most available astigmatid mitochondrial genomes shared the same consistent gene arrangement that could be the potential ancestral pattern in Astigmatina.


2017 ◽  
Author(s):  
Gisele Lopes Nunes ◽  
Renato Renison Moreira Oliveira ◽  
Eder Soares Pires ◽  
Santelmo Vasconcelos ◽  
Thadeu Pietrobon ◽  
...  

AbstractWe report the complete mitochondrial genome sequence of Glomeridesmus spelaeus, the first sequenced genome of the order Gomeridesmida. The genome is 14,825 pb in length and encodes 37 mitochondrial (13 PCGs, 2 rRNA genes, 22 tRNA) genes and contains a typical AT-rich region. The base composition of the genome was A (40.1%), T (36.4%), C (15.8%), and G (7.6%), with an AT content of 76.5%. Our results indicated that Glomeridesmus spelaeus only distantly related to the other Diplopoda species with available mitochondrial genomes in the public databases. The publication of the mitogenome of G. spelaeus will contribute to the identification of troglobitic invertebrates, a very significant advance for the conservation of the troglofauna.


2018 ◽  
Vol 19 (8) ◽  
pp. 2383 ◽  
Author(s):  
Qixiang Lu ◽  
Wenqing Ye ◽  
Ruisen Lu ◽  
Wuqin Xu ◽  
Yingxiong Qiu

The monocot genus Croomia (Stemonaceae) comprises three herbaceous perennial species that exhibit EA (Eastern Asian)–ENA (Eastern North American) disjunct distribution. However, due to the lack of effective genomic resources, its evolutionary history is still weakly resolved. In the present study, we conducted comparative analysis of the complete chloroplast (cp) genomes of three Croomia species and two Stemona species. These five cp genomes proved highly similar in overall size (154,407–155,261 bp), structure, gene order and content. All five cp genomes contained the same 114 unique genes consisting of 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Gene content, gene order, AT content and IR/SC boundary structures were almost the same among the five Stemonaceae cp genomes, except that the Stemona cp genome was found to contain an inversion in cemA and petA. The lengths of five genomes varied due to contraction/expansion of the IR/SC borders. A/T mononucleotides were the richest Simple Sequence Repeats (SSRs). A total of 46, 48, 47, 61 and 60 repeats were identified in C. japonica, C. heterosepala, C. pauciflora, S. japonica and S. mairei, respectively. A comparison of pairwise sequence divergence values across all introns and intergenic spacers revealed that the ndhF–rpl32, psbM–trnD and trnS–trnG regions are the fastest-evolving regions. These regions are therefore likely to be the best choices for molecular evolutionary and systematic studies at low taxonomic levels in Stemonaceae. Phylogenetic analyses of the complete cp genomes and 78 protein-coding genes strongly supported the monophyly of Croomia. Two Asian species were identified as sisters that likely diverged in the Early Pleistocene (1.62 Mya, 95% HPD: 1.125–2.251 Mya), whereas the divergence of C. pauciflora dated back to the Late Miocene (4.77 Mya, 95% HPD: 3.626–6.162 Mya). The availability of these cp genomes will provide valuable genetic resources for further population genetics and phylogeographic studies on Croomia.


2021 ◽  
Author(s):  
Yingfeng Niu ◽  
Chengwen Gao ◽  
Jin Liu

Abstract BackgroundAmong the Mangifera species, mango (Mangifera indica) is an important commercial fruit crop. However, very few studies have been conducted on the Mangifera mitochondrial genome. This study reports and compares the newly sequenced mitochondrial genomes of three Mangifera species. Results Mangifera mitochondrial genomes showed partial similarities in the overall size, genomic structure, and gene content. Specifically, the genomes are circular and contain about 63-69 predicted functional genes, including five ribosomal RNA (rRNA) genes and 24-27 transfer RNA (tRNA) genes. The GC contents of the Mangifera mitochondrial genomes are similar, ranging from 44.42–44.66%. Leucine (Leu) and serine (Ser) are the most frequently used, while tryptophan (Trp) and cysteine (Cys) are the least used amino acids among the protein-coding genes in Mangifera mitochondrial genomes. We also identified 7-10 large chloroplast genomic fragments in the mitochondrial genome, ranging from 1407-6142 bp. Additionally, four intact mitochondrial tRNAs genes (tRNA-Cys, tRNA-Trp, tRNA-Pro, and tRNA-Met) and intergenic spacer regions were identified. Phylogenetic analysis based on the common protein-coding genes of most branches provided a high support value. ConclusionsWe sequenced and compared the mitochondrial genomes of three Mangifera species. The results showed that the gene content of Mangifera mitochondrial genomes is similar across various species. Gene transferred from the chloroplast genome to the mitochondrial genome were identified. This study provides valuable information for evolutionary and molecular studies of Mangifera and a basis for further studies on genomic breeding of mango.


Zootaxa ◽  
2020 ◽  
Vol 4821 (3) ◽  
pp. 533-552
Author(s):  
LINGLING WU ◽  
XIAOLI JIANG ◽  
FENGJIAO XIE ◽  
SAIMA KAUSAR ◽  
DAN LIANG ◽  
...  

In the present study, the complete mitochondrial genome of Smerinthus planus Walker (Lepidoptera: Sphingidae) was sequenced and analyzed to add additional traits for expanding our knowledge on systematics and phylogenetics of world-wide studied Sphingidae moths. The mitochondrial genome is a circular double-stranded DNA molecule, 15368 bp in size. It includes 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, twenty-two transfer RNA (tRNA) genes, and an adenine (A) + thymine (T) rich region. All the PCGs start with the typical ATN start codons, except for the nad5 gene, which initiates with TTA. The codon usage analysis revealed that Phe, Ile, Lys, Leu, Asn, and Tys were the most common amino acids, while Cys and Trp were least common. Among the 13 PCGs, nine genes harbor the complete termination codon TAA, whereas the remaining four genes (nad1, cob, nad4, and nad3) terminate with TAG. The A+T rich region of S. planus is 318 bp. This region displays the highest A+T rich content, accounting for 91.50%, with both AT skew (-0.09) and GC skew (-0.26) are negative. Like other Lepidopterans, the A+T-rich region of the S. planus also contains some conserved regions, including the motif ‘ATAGA’ followed by an 18 bp poly-T stretch, a microsatellite-like (AT)8 and a poly-A element. Phylogenetic relationships, based on nucleotide sequences from the genomes of 31 species, confirmed that S. planus belong to the Sphingidae family. This study is aimed to improve the mitochondrial genome database of moths and provide valuable information for studying the genetic evolution and phylogeny of Lepidopteran species.


Author(s):  
Liyan Qu ◽  
Heng Zhang ◽  
Fengying Zhang ◽  
Wei Wang ◽  
Fenghua Tang ◽  
...  

Background: Genome-scale approaches have played a significant role in the analysis of evolutionary relationships. Because of rich polymorphisms, high evolutionary rate and rare recombination, mitochondrial DNA sequences are commonly considered as effective markers for estimating population genetics, evolutionary and phylogenetic relationships. Flying fishes are important components of epipelagic ecosystems. Up to now, only few complete mitochondrial genomes of flying fishes have been reported. In the present study, the complete mitochondrial DNA sequences of the Cheilopogon pinnatibarbatus japonicus and Hirundichthys rondeletii had been determined. Methods: Based on the published mitogenome of Cheilopogon atrisignis (GenBank: KU360729), fifteen pairs of primers were designed by the software Primer Premier 5.0 to get the complete mitochondrial genomes of two flying fishes. According to the reported data, the phylogenetic position of two flying fishes were detected using the conserved 12 protein-coding genes. Result: The complete mitochondrial genomes of Cheilopogon pinnatibarbatus japonicus and Hirundichthys rondeletii are determined. They are 16532bp and 16525bp in length, respectively. And they both consists of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a control region. The OL regions are conserved in these two flying fishes and might have no function. From the tree topologies, we found C.p. japonicus and H. rondeletii clustered in a group. The findings of the study would contribute to the phylogenetic classification and the genetic conservation management of C.p. japonicus and H. rondeletii.


2014 ◽  
Vol 35 (3) ◽  
pp. 331-343 ◽  
Author(s):  
Yongmin Li ◽  
Huabin Zhang ◽  
Xiaoyou Wu ◽  
Hui Xue ◽  
Peng Yan ◽  
...  

We determined the complete nucleotide sequence of the mitochondrial genome of Odorrana schmackeri (family Ranidae). The O. schmackeri mitogenome (18 302 bp) contained 13 protein-coding genes, 2 rRNA genes, 21 tRNA genes and a single control region (CR). In the new mitogenome, the distinctive feature is the loss of tRNA-His, which could be explained by a hypothesis of gene substitution. The new sequence data was used to assess the phylogenetic relationships among 23 ranid species mostly from China using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic analyses support two families (Ranidae, Dicroglossidae) for Chinese ranids. In Ranidae, we support the genus Amolops should be retained in the subfamily Raninae rather than in a distinct subfamily Amolopinae of its own. Meanwhile, the monophyly of the genus Odorrana was supported. Within Dicroglossidae, four tribes were well supported including Occidozygini, Dicroglossini, Limnonectini and Paini. More mitochondrial genomes and nuclear genes are required to decisively evaluate phylogenetic relationships of ranids.


Sign in / Sign up

Export Citation Format

Share Document