scholarly journals Genetic differentiation, local adaptation and phenotypic plasticity in fragmented populations of a rare forest herb

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4929 ◽  
Author(s):  
Rodolfo Gentili ◽  
Aldo Solari ◽  
Martin Diekmann ◽  
Cecilia Duprè ◽  
Gianna Serafina Monti ◽  
...  

BackgroundDue to habitat loss and fragmentation, numerous forest species are subject to severe population decline. Investigating variation in genetic diversity, phenotypic plasticity and local adaptation should be a prerequisite for implementing conservation actions. This study aimed to explore these aspects in ten fragmented populations ofPhysospermum cornubiensein view of translocation measures across its Italian range.MethodsFor each population we collected environmental data on landscape (habitat size, quality and fragmentation) and local conditions (slope, presence of alien species, incidence of the herbivorous insectMetcalfa pruinosaand soil parameters). We measured vegetative and reproductive traits in the field and analysed the genetic population structure using ISSR markers (STRUCTURE and AMOVA). We then estimated the neutral (FST) and quantitative (PST) genetic differentiation of populations.ResultsThe populations exhibited moderate phenotypic variation. Population size (range: 16–655 individuals), number of flowering adults (range: 3–420 individuals) and inflorescence size (range: 5.0–8.4 cm) were positively related to Mg soil content. Populations’ gene diversity was moderate (Nei-H = 0.071–0.1316); STRUCTURE analysis identified five different clusters and three main geographic groups: upper, lower, and Apennine/Western Po plain. Fragmentation did not have an influence on the local adaptation of populations, which for all measured traits showed PST < FST, indicating convergent selection.DiscussionThe variation of phenotypic traits across sites was attributed to plastic response rather than local adaptation. Plant translocation from suitable source populations to endangered ones should particularly take into account provenance according to identified genetic clusters and specific soil factors.

2019 ◽  
Vol 6 (3) ◽  
pp. 182115 ◽  
Author(s):  
Matthew Sasaki ◽  
Sydney Hedberg ◽  
Kailin Richardson ◽  
Hans G. Dam

Predicting the response of populations to climate change requires an understanding of how various factors affect thermal performance. Genetic differentiation is well known to affect thermal performance, but the effects of sex and developmental phenotypic plasticity often go uncharacterized. We used common garden experiments to test for effects of local adaptation, developmental phenotypic plasticity and individual sex on thermal performance of the ubiquitous copepod,Acartia tonsa(Calanoida, Crustacea) from two populations strongly differing in thermal regimes (Florida and Connecticut, USA). Females had higher thermal tolerance than males in both populations, while the Florida population had higher thermal tolerance compared with the Connecticut population. An effect of developmental phenotypic plasticity on thermal tolerance was observed only in the Connecticut population. Our results show clearly that thermal performance is affected by complex interactions of the three tested variables. Ignoring sex-specific differences in thermal performance may result in a severe underestimation of population-level impacts of warming because of population decline due to sperm limitation. Furthermore, despite having a higher thermal tolerance, low-latitude populations may be more vulnerable to warming as they lack the ability to respond to increases in temperature through phenotypic plasticity.


2018 ◽  
Author(s):  
Matthew Sasaki ◽  
Sydney Hedberg ◽  
Kailin Richardson ◽  
Hans G. Dam

AbstractPredicting the response of populations to climate change requires knowledge of thermal performance. Genetic differentiation and phenotypic plasticity affect thermal performance, but the effects of sex and developmental temperatures often go uncharacterized. We used common garden experiments to test for effects of local adaptation, developmental phenotypic plasticity, and individual sex on thermal performance of the ubiquitous copepod, Acartia tonsa. Females had higher thermal tolerance than males in both populations, while the Florida population had higher thermal tolerance compared to the Connecticut population. An effect of developmental phenotypic plasticity on thermal tolerance was observed only in the Connecticut population. Ignoring sex-specific differences may result in a severe underestimation of population-level impacts of warming (i.e. - population decline due to sperm limitation). Further, despite having a higher thermal tolerance, southern populations may be more vulnerable to warming as they lack the ability to respond to increases in temperature through phenotypic plasticity.


2020 ◽  
Author(s):  
Violeta I. Simón-Porcar ◽  
Jose L. Silva ◽  
Mario Vallejo-Marín

AbstractBackground and AimsTraditionally, local adaptation has been seen as the outcome of a long evolutionary history, particularly in sexual lineages. In contrast, phenotypic plasticity has been thought to be most important during the initial stages of population establishment and in asexual species. We evaluated the roles of adaptive evolution and phenotypic plasticity in the invasive success of two closely related species of invasive monkeyflowers (Mimulus) in the United Kingdom (UK) that have contrasting reproductive strategies: M. guttatus combines sexual (seeds) and asexual (clonal growth) reproduction while M. × robertsii is entirely asexual.MethodsWe compared the clonality (number of stolons), floral and vegetative phenotype, and phenotypic plasticity of native (M. guttatus) and invasive (M. guttatus and M. × robertsii) populations grown in controlled environment chambers under the environmental conditions at each latitudinal extreme of the UK. The goal was to discern the roles of temperature and photoperiod on the expression of phenotypic traits. Next, we tested the existence of local adaptation in the two species within the invasive range with a reciprocal transplant experiment at two field sites in the latitudinal extremes of the UK, and analysed which phenotypic traits underlie potential local fitness advantage in each species.Key ResultsPopulations of M. guttatus in the UK showed local adaptation through sexual function (fruit production), while M. × robertsii showed local adaptation via asexual function (stolon production). Phenotypic selection analyses revealed that different traits are associated with fitness in each species. Invasive and native populations of M. guttatus had similar phenotypic plasticity and clonality. M. × robertsii presents greater plasticity and clonality than native M. guttatus, but most populations have restricted clonality under the warm conditions of the south of UK.ConclusionsOur study provides experimental evidence of local adaptation in a strictly asexual invasive species with high clonality and phenotypic plasticity. This indicates that even asexual taxa can rapidly (< 200 years) adapt to novel environmental conditions in which alternative strategies may not ensure the persistence of populations.


2020 ◽  
Vol 10 (18) ◽  
pp. 9707-9720
Author(s):  
Pietro Viacava ◽  
Simone P. Blomberg ◽  
Gabriele Sansalone ◽  
Matthew J. Phillips ◽  
Thomas Guillerme ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. 12
Author(s):  
José Marcos Torres-Valverde ◽  
José Ciro Hernández-Díaz ◽  
Artemio Carrillo-Parra ◽  
Eduardo Mendoza-Maya ◽  
Christian Wehenkel

The three Mexican spruces’ distributions are fragmented, which could lead to phenological, morphological and genetic differentiation, partially caused by local adaptation. In this study, we examined the effect that climatic variables had on the survival and growth of 5641 Picea seedlings, coming from eight seed provenances of three species and produced in identical nursery conditions. The respective responses of each species and provenance can be considered as a proxy of the genetic differentiation and adaptation of each population. A cluster analysis revealed: (i) significant differences in genetic quantitative traits among the three Picea species and (ii) significant correlations between genetic quantitative traits and climatic factors.


2020 ◽  
Vol 50 (2) ◽  
pp. 161-169 ◽  
Author(s):  
O. Alejandro Aleuy ◽  
Stephanie Peacock ◽  
Eric P. Hoberg ◽  
Kathreen E. Ruckstuhl ◽  
Taylor Brooks ◽  
...  

2020 ◽  
Vol 54 (1) ◽  
pp. 309-322 ◽  
Author(s):  
Scott R. Goeppner ◽  
Maggie E. Roberts ◽  
Lynne E. Beaty ◽  
Barney Luttbeg

2022 ◽  
Author(s):  
Tiago da Silva Ribeiro ◽  
José A Galván ◽  
John E Pool

Local adaptation can lead to elevated genetic differentiation at the targeted genetic variant and nearby sites. Selective sweeps come in different forms, and depending on the initial and final frequencies of a favored variant, very different patterns of genetic variation may be produced. If local selection favors an existing variant that had already recombined onto multiple genetic backgrounds, then the width of elevated genetic differentiation (high FST) may be too narrow to detect using a typical windowed genome scan, even if the targeted variant becomes highly differentiated. We therefore used a simulation approach to investigate the power of SNP-level FST (specifically, the maximum SNP FST value within a window) to detect diverse scenarios of local adaptation, and compared it against whole-window FST and the Comparative Haplotype Identity statistic. We found that SNP FST had superior power to detect complete or mostly complete soft sweeps, but lesser power than window-wide statistics to detect partial hard sweeps. To investigate the relative enrichment and nature of SNP FST outliers from real data, we applied the two FST statistics to a panel of Drosophila melanogaster populations. We found that SNP FST had a genome-wide enrichment of outliers compared to demographic expectations, and though it yielded a lesser enrichment than window FST, it detected mostly unique outlier genes and functional categories. Our results suggest that SNP FST is highly complementary to typical window-based approaches for detecting local adaptation, and merits inclusion in future genome scans and methodologies.


Authorea ◽  
2020 ◽  
Author(s):  
Pietro Viacava ◽  
Simone Blomberg ◽  
Gabriele Sansalone ◽  
Matthew Phillips ◽  
Thomas Guillerme ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document