scholarly journals Parvalbumin expression and gamma oscillation occurrence increase over time in a neurodevelopmental model of NMDA receptor dysfunction

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5543
Author(s):  
Ben van Lier ◽  
Andreas Hierlemann ◽  
Frédéric Knoflach

Dysfunction of the N-methyl-d-aspartate receptor (NMDAR) is thought to play a role in the pathophysiology of neurodevelopmental diseases like schizophrenia. To study the effects of NMDAR dysfunction on synaptic transmission and network oscillations, we used hippocampal tissue of NMDAR subunit GluN2A knockout (KO) mice. Field excitatory postsynaptic potentials were recorded in acute hippocampal slices of adult animals. Synaptic transmission was impaired in GluN2A KO slices compared to wild-type (WT) slices. Further, to investigate whether NMDAR dysfunction would alter neurodevelopment in vitro, we used organotypic hippocampal slice cultures of WT and GluN2A KO mice. Immunostaining performed with cultures kept two, seven, 14, 25 days in vitro (DIV) revealed an increasing expression of parvalbumin (PV) over time. As a functional readout, oscillatory activity induced by the cholinergic agonist carbachol was recorded in cultures kept seven, 13, and 26 DIV using microelectrode arrays. Initial analysis focused on the occurrence of delta, theta, beta and gamma oscillations over genotype, DIV and hippocampal area (CA1, CA3, dentate gyrus (DG)). In a follow-up analysis, we studied the peak frequency and the peak power of each of the four oscillation bands per condition. The occurrence of gamma oscillations displayed an increase by DIV similar to the PV immunostaining. Unlike gamma occurrence, delta, theta, and beta occurrence did not change over time in culture. The peak frequency and peak power in the different bands of the oscillations were not different in slices of WT and GluN2A KO mice. However, the level of PV expression was lower in GluN2A KO compared to WT mice. Given the role of PV-containing fast-spiking basket cells in generation of oscillations and the decreased PV expression in subjects with schizophrenia, the study of gamma oscillations in organotypic hippocampal slices represents a potentially valuable tool for the characterization of novel therapeutic drugs.

2018 ◽  
Vol 17 (6) ◽  
pp. 404-411 ◽  
Author(s):  
Syeda Mehpara Farhat ◽  
Touqeer Ahmed

Background: Aluminum (Al) causes neurodegeneration and its toxic effects on cholinergic system in the brain is well documented. However, it is unknown whether and how Al changes oscillation patterns, driven by the cholinergic system, in the hippocampus. Objective: We studied acute effects of Al on nicotinic acetylcholine receptors (nAChRs)-mediated modulation of persistent gamma oscillations in the hippocampus. Method: The field potential recording was done in CA3 area of acute hippocampal slices. Results: Carbachol-induced gamma oscillation peak power increased (1.32±0.09mV2/Hz, P<0.01) in control conditions (without Al) by application of 10µM nicotine as compared to baseline value normalized to 1. This nicotine-induced facilitation of gamma oscillation peak power was found to depend on non-α7 nAChRs. In slices with Al pre-incubation for three to four hours, gamma oscillation peak power was reduced (5.4±1.8mV2/Hz, P<0.05) and facilitatory effect of nicotine on gamma oscillation peak power was blocked as compared to the control (18.06±2.1mV2/Hz) or one hour Al pre-incubated slices (11.3±2.5mV2/Hz). Intriguingly wash-out, after three to four hours of Al incubation, failed to restore baseline oscillation power and its facilitation by nicotine as no difference was observed in gamma oscillation peak power between Al wash-out slices (3.4±1.1mV2/Hz) and slices without washout (3.6±0.9mV2/Hz). Conclusion: This study shows that at cellular level, exposure of hippocampal tissue to Al compromised nAChR-mediated facilitation of cholinergic hippocampal gamma oscillations. Longer in vitro Al exposure caused permanent changes in hippocampal oscillogenic circuitry and changed its sensitivity to nAChR-modulation. This study will help to understand the possible mechanism of cognitive decline induced by Al.


2001 ◽  
Vol 85 (5) ◽  
pp. 2063-2069 ◽  
Author(s):  
Kerstin Stenkamp ◽  
J. Matias Palva ◽  
Marylka Uusisaari ◽  
Sebastian Schuchmann ◽  
Dietmar Schmitz ◽  
...  

The decrease in brain CO2 partial pressure (pCO2) that takes place both during voluntary and during pathological hyperventilation is known to induce gross alterations in cortical functions that lead to subjective sensations and altered states of consciousness. The mechanisms that mediate the effects of the decrease in pCO2 at the neuronal network level are largely unexplored. In the present work, the modulation of gamma oscillations by hypocapnia was studied in rat hippocampal slices. Field potential oscillations were induced by the cholinergic agonist carbachol under an N-methyl-D-aspartate (NMDA)-receptor blockade and were recorded in the dendritic layer of the CA3 region with parallel measurements of changes in interstitial and intraneuronal pH (pHo and pHi, respectively). Hypocapnia from 5 to 1% CO2 led to a stable monophasic increase of 0.5 and 0.2 units in pHo and pHi, respectively. The mean oscillation frequency increased slightly but significantly from 32 to 34 Hz and the mean gamma-band amplitude (20 to 80 Hz) decreased by 20%. Hypocapnia induced a dramatic enhancement of the temporal stability of the oscillations, as was indicated by a two-fold increase in the exponential decay time constant fitted to the autocorrelogram. A rise in pHi evoked by the weak base trimethylamine (TriMA) was associated with a slight increase in oscillation frequency (37 to 39 Hz) and a decrease in amplitude (30%). Temporal stability, on the other hand, was decreased by TriMA, which suggests that its enhancement in 1% CO2 was related to the rise in pHo. In 1% CO2, the decay-time constant of the evoked monosynaptic pyramidal inhibitory postsynaptic current (IPSC) was unaltered but its amplitude was enhanced. This increase in IPSC amplitude seems to significantly contribute to the enhancement of temporal stability because the enhancement was almost fully reversed by a low concentration of bicuculline. These results suggest that changes in brain pCO2 can have a strong influence on the temporal modulation of gamma rhythms.


1999 ◽  
Vol 82 (5) ◽  
pp. 2441-2450 ◽  
Author(s):  
Solange van der Linden ◽  
Ferruccio Panzica ◽  
Marco de Curtis

Fast oscillations at 25–80 Hz (gamma activity) have been proposed to play a role in attention-related mechanisms and synaptic plasticity in cortical structures. Recently, it has been demonstrated that the preservation of the entorhinal cortex is necessary to maintain gamma oscillations in the hippocampus. Because gamma activity can be reproduced in vitro by cholinergic activation, this study examined the characteristics of gamma oscillations induced by arterial perfusion or local intracortical injections of carbachol in the entorhinal cortex of the in vitro isolated guinea pig brain preparation. Shortly after carbachol administration, fast oscillatory activity at 25.2–28.2 Hz was observed in the medial but not in the lateral entorhinal cortex. Such activity was transiently associated with oscillations in the theta range that showed a variable pattern of distribution in the entorhinal cortex. No oscillatory activity was observed when carbachol was injected in the lateral entorhinal cortex. Gamma activity in the medial entorhinal cortex showed a phase reversal at 200–400 μm, had maximal amplitude at 400–500 μm depth, and was abolished by arterial perfusion of atropine (5 μM). Local carbachol application in the medial entorhinal cortex induced gamma oscillations in the hippocampus, whereas no oscillations were observed in the amygdala and in the piriform, periamygdaloid, and perirhinal cortices ipsilateral and contralateral to the carbachol injection. Hippocampal oscillations had higher frequency than the gamma activity recorded in the entorhinal cortex, suggesting the presence of independent generators in the two structures. The selective ability of the medial but not the lateral entorhinal cortex to generate gamma activity in response to cholinergic activation suggests a differential mode of signal processing in entorhinal cortex subregions.


2019 ◽  
Vol 122 (2) ◽  
pp. 721-728 ◽  
Author(s):  
Masahito Kawamura ◽  
David N. Ruskin ◽  
Susan A. Masino

Adenosine receptors are widely expressed in the brain, and adenosine is a key bioactive substance for neuroprotection. In this article, we clarify systematically the role of adenosine A1 receptors during a range of timescales and conditions when a significant amount of adenosine is released. Using acute hippocampal slices obtained from mice that were wild type or null mutant for the adenosine A1 receptor, we quantified and characterized the impact of varying durations of experimental ischemia, hypoxia, and hypoglycemia on synaptic transmission in the CA1 subregion. In normal tissue, these three stressors rapidly and markedly reduced synaptic transmission, and only treatment of sufficient duration led to incomplete recovery. In contrast, inactivation of adenosine A1 receptors delayed and/or lessened the reduction in synaptic transmission during all three stressors and reduced the magnitude of the recovery significantly. We reproduced the responses to hypoxia and hypoglycemia by applying an adenosine A1 receptor antagonist, validating the clear effects of genetic receptor inactivation on synaptic transmission. We found activation of adenosine A1 receptor inhibited hippocampal synaptic transmission during the acute phase of ischemia, hypoxia, or hypoglycemia and caused the recovery from synaptic impairment after these three stressors using genetic mutant. These studies quantify the neuroprotective role of the adenosine A1 receptor during a variety of metabolic stresses within the same recording system. NEW & NOTEWORTHY Deprivation of oxygen and/or glucose causes a rapid adenosine A1 receptor-mediated decrease in synaptic transmission in mouse hippocampus. We quantified adenosine A1 receptor-mediated inhibition during and synaptic recovery after ischemia, hypoxia, and hypoglycemia of varying durations using a genetic mutant and confirmed these findings using pharmacology. Overall, using the same recording conditions, we found the acute response and the neuroprotective ability of the adenosine A1 receptor depended on the type and duration of deprivation event.


2004 ◽  
Vol 91 (2) ◽  
pp. 1071-1077 ◽  
Author(s):  
Cary L. Scheiderer ◽  
Lynn E. Dobrunz ◽  
Lori L. McMahon

Neurons located in the locus coeruleus project to hippocampus and provide noradrenergic innervation necessary for hippocampal-dependent learning and memory. The mechanisms underlying the function of norepinephrine (NE) in memory processing are unknown but likely reside in the ability of NE to modulate the efficacy of glutamate synaptic transmission via activation of G-protein-coupled adrenergic receptors. Here we show that application of NE to rat hippocampal slices in vitro induces a long-term depression (LTD) of synaptic transmission at excitatory CA3–CA1 synapses that persists for ≥40 min after agonist washout. This LTD, which we refer to as NE LTD, is mediated by activation of α1 adrenergic receptors because the α1 agonist methoxamine can induce LTD at the same magnitude as that induced with the nonselective adrenergic agonist NE. Furthermore, NE LTD induced by either NE or methoxamine is blocked with the α1 receptor antagonist, prazosin, but is unaffected by antagonists of α2 and β receptors. This plasticity persists in the presence of the GABAA receptor antagonist bicuculline, indicating that adrenergic modulation of GABAA receptor-mediated transmission does not underlie NE LTD. Induction of NE LTD requires presynaptic activity during agonist application and postsynaptic activation of N-methyl-d-aspartate receptors, fulfilling Hebbian criteria of coincident pre- and postsynaptic activity. The expression of NE LTD is likely to be postsynaptic because paired-pulse facilitation ratios during NE LTD expression are not different from baseline, similar to LTD induced by low-frequency stimulation. Thus we report the identification and characterization of a novel Hebbian form of LTD in hippocampus that is induced after activation of α1 adrenergic receptors. This plasticity may be a mechanism by which the adrenergic system participates in normal cognitive function.


2013 ◽  
Vol 141 (5) ◽  
pp. 633-647 ◽  
Author(s):  
Eiji Shigetomi ◽  
Eric A. Bushong ◽  
Martin D. Haustein ◽  
Xiaoping Tong ◽  
Olan Jackson-Weaver ◽  
...  

Intracellular Ca2+ transients are considered a primary signal by which astrocytes interact with neurons and blood vessels. With existing commonly used methods, Ca2+ has been studied only within astrocyte somata and thick branches, leaving the distal fine branchlets and endfeet that are most proximate to neuronal synapses and blood vessels largely unexplored. Here, using cytosolic and membrane-tethered forms of genetically encoded Ca2+ indicators (GECIs; cyto-GCaMP3 and Lck-GCaMP3), we report well-characterized approaches that overcome these limitations. We used in vivo microinjections of adeno-associated viruses to express GECIs in astrocytes and studied Ca2+ signals in acute hippocampal slices in vitro from adult mice (aged ∼P80) two weeks after infection. Our data reveal a sparkling panorama of unexpectedly numerous, frequent, equivalently scaled, and highly localized Ca2+ microdomains within entire astrocyte territories in situ within acute hippocampal slices, consistent with the distribution of perisynaptic branchlets described using electron microscopy. Signals from endfeet were revealed with particular clarity. The tools and experimental approaches we describe in detail allow for the systematic study of Ca2+ signals within entire astrocytes, including within fine perisynaptic branchlets and vessel-associated endfeet, permitting rigorous evaluation of how astrocytes contribute to brain function.


2003 ◽  
Vol 90 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Clayton T. Dickson ◽  
Gerardo Biella ◽  
Marco de Curtis

Slow (<1 Hz) periodic activity is a distinctive discharge pattern observed in different cortical and sub-cortical structures during sleep and anesthesia. By performing field and cellular recordings, we demonstrated that slow periodic events (0.02–0.4 Hz) are spontaneously generated in the entorhinal cortex of the in vitro isolated whole brain of the guinea pig. These events were characterized by gradually developing runs of low-amplitude (50–300 μV), high-frequency (25–70 Hz) oscillations superimposed on a slow potential that lasted 1–3 s. Both slow and fast components showed a phase reversal in the superficial layers. In layer II-III entorhinal neurons, the slow periodic events correlated to a slowly developing depolarizing envelope capped by subthreshold membrane potential oscillations and action potential discharge. Slow periodic field events propagated tangentially across the entorhinal cortex and could be triggered by stimulation of superficial associative fibers, suggesting that they were generated by and propagated via network interactions in the superficial layers. Slow periodic events were reversibly abolished by muscarinic excitation elicited by carbachol (50 μM) that promoted intracellular membrane potential depolarization associated with continuous fast oscillatory activity in the gamma frequency range. These results suggest that, as proposed in vivo, activity changes in the entorhinal cortex of the in vitro isolated guinea-pig brain reflect different activation states that are under cholinergic control.


Neuroscience ◽  
2015 ◽  
Vol 284 ◽  
pp. 459-469 ◽  
Author(s):  
J.O. Hollnagel ◽  
R. ul Haq ◽  
C.J. Behrens ◽  
A. Maslarova ◽  
I. Mody ◽  
...  

2012 ◽  
Vol 107 (5) ◽  
pp. 1313-1324 ◽  
Author(s):  
Takafumi Kawai ◽  
Hideki Abe ◽  
Yoshitaka Oka

A growing body of evidence suggests that teleosts are important models for the study of neural processing of olfactory information, and the functional role of dopamine (DA), which is a potent neuromodulator endogenous to the mammalian olfactory bulb, has been one of the strongest focuses in this field. However, the cellular mechanisms of dopaminergic neuromodulation in olfactory bulbar neural circuits have not been fully understood. We investigated such mechanisms by using the goldfish, which offers several advantages for analyzing olfactory information processing by electrophysiological methods. First, we found in the olfactory bulb that numerous cell bodies of the dopaminergic neurons are mainly distributed in the mitral cell layer and extend fine processes to the glomerular layer. Next, we made in vitro field potential recordings and showed that synaptic transmissions from mitral to granule cells were suppressed by DA application. DA also increased the paired-pulse ratio, suggesting that the suppression of synaptic transmission is caused by a decrease in presynaptic glutamate release from the mitral cells. Furthermore, DA significantly suppressed the oscillatory activity of the olfactory bulb in response to olfactory stimuli. Although DA suppresses the synaptic inputs from the olfactory nerve to the olfactory bulbar neurons in mammals, this phenomenon was not observed in the goldfish. These findings indicate that suppression of the mitral to granule cell synaptic transmission in the reciprocal synapses plays an important role in the negative regulation of olfactory responsiveness in the goldfish olfactory bulb.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Nicola H. Morgan ◽  
Ian M. Stanford ◽  
Gavin L. Woodhall

Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs) at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide (ACPA; 10 M), an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC) neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500 nM), increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.


Sign in / Sign up

Export Citation Format

Share Document