No evidence for role of extracellular choline-acetyltransferase in generation of gamma oscillations in rat hippocampal slices in vitro

Neuroscience ◽  
2015 ◽  
Vol 284 ◽  
pp. 459-469 ◽  
Author(s):  
J.O. Hollnagel ◽  
R. ul Haq ◽  
C.J. Behrens ◽  
A. Maslarova ◽  
I. Mody ◽  
...  
2018 ◽  
Vol 17 (6) ◽  
pp. 404-411 ◽  
Author(s):  
Syeda Mehpara Farhat ◽  
Touqeer Ahmed

Background: Aluminum (Al) causes neurodegeneration and its toxic effects on cholinergic system in the brain is well documented. However, it is unknown whether and how Al changes oscillation patterns, driven by the cholinergic system, in the hippocampus. Objective: We studied acute effects of Al on nicotinic acetylcholine receptors (nAChRs)-mediated modulation of persistent gamma oscillations in the hippocampus. Method: The field potential recording was done in CA3 area of acute hippocampal slices. Results: Carbachol-induced gamma oscillation peak power increased (1.32±0.09mV2/Hz, P<0.01) in control conditions (without Al) by application of 10µM nicotine as compared to baseline value normalized to 1. This nicotine-induced facilitation of gamma oscillation peak power was found to depend on non-α7 nAChRs. In slices with Al pre-incubation for three to four hours, gamma oscillation peak power was reduced (5.4±1.8mV2/Hz, P<0.05) and facilitatory effect of nicotine on gamma oscillation peak power was blocked as compared to the control (18.06±2.1mV2/Hz) or one hour Al pre-incubated slices (11.3±2.5mV2/Hz). Intriguingly wash-out, after three to four hours of Al incubation, failed to restore baseline oscillation power and its facilitation by nicotine as no difference was observed in gamma oscillation peak power between Al wash-out slices (3.4±1.1mV2/Hz) and slices without washout (3.6±0.9mV2/Hz). Conclusion: This study shows that at cellular level, exposure of hippocampal tissue to Al compromised nAChR-mediated facilitation of cholinergic hippocampal gamma oscillations. Longer in vitro Al exposure caused permanent changes in hippocampal oscillogenic circuitry and changed its sensitivity to nAChR-modulation. This study will help to understand the possible mechanism of cognitive decline induced by Al.


2001 ◽  
Vol 85 (5) ◽  
pp. 2063-2069 ◽  
Author(s):  
Kerstin Stenkamp ◽  
J. Matias Palva ◽  
Marylka Uusisaari ◽  
Sebastian Schuchmann ◽  
Dietmar Schmitz ◽  
...  

The decrease in brain CO2 partial pressure (pCO2) that takes place both during voluntary and during pathological hyperventilation is known to induce gross alterations in cortical functions that lead to subjective sensations and altered states of consciousness. The mechanisms that mediate the effects of the decrease in pCO2 at the neuronal network level are largely unexplored. In the present work, the modulation of gamma oscillations by hypocapnia was studied in rat hippocampal slices. Field potential oscillations were induced by the cholinergic agonist carbachol under an N-methyl-D-aspartate (NMDA)-receptor blockade and were recorded in the dendritic layer of the CA3 region with parallel measurements of changes in interstitial and intraneuronal pH (pHo and pHi, respectively). Hypocapnia from 5 to 1% CO2 led to a stable monophasic increase of 0.5 and 0.2 units in pHo and pHi, respectively. The mean oscillation frequency increased slightly but significantly from 32 to 34 Hz and the mean gamma-band amplitude (20 to 80 Hz) decreased by 20%. Hypocapnia induced a dramatic enhancement of the temporal stability of the oscillations, as was indicated by a two-fold increase in the exponential decay time constant fitted to the autocorrelogram. A rise in pHi evoked by the weak base trimethylamine (TriMA) was associated with a slight increase in oscillation frequency (37 to 39 Hz) and a decrease in amplitude (30%). Temporal stability, on the other hand, was decreased by TriMA, which suggests that its enhancement in 1% CO2 was related to the rise in pHo. In 1% CO2, the decay-time constant of the evoked monosynaptic pyramidal inhibitory postsynaptic current (IPSC) was unaltered but its amplitude was enhanced. This increase in IPSC amplitude seems to significantly contribute to the enhancement of temporal stability because the enhancement was almost fully reversed by a low concentration of bicuculline. These results suggest that changes in brain pCO2 can have a strong influence on the temporal modulation of gamma rhythms.


2018 ◽  
Author(s):  
CS Goulton ◽  
M Watanabe ◽  
DL Cheung ◽  
KW Wang ◽  
T Oba ◽  
...  

Abstract/SummaryEfficacious neuronal inhibition is sustained by the neuronal K+Cl- co-transporter KCC2, and loss of KCC2 function through injury or mutation is associated with altered GABAergic signalling and neuronal seizures. Here we report a transgenic mouse with conditional KCC2 overexpression that results in increased membrane transport function. Increased KCC2 has little impact on behavioural and in vitro assays of neuronal excitability and GABAA receptor responses under resting conditions. In contrast, increased KCC2 imparts resistance to seizure-like neuronal activity in hippocampal slices and prevents the progression of mice into behavioural status epilepticus following multiple kainic acid doses. Our results demonstrate a transgenic mouse to facilitate investigations into the role of KCC2 in brain function, and provide a proof of principle that targeting KCC2 may be an effective way to selectively enhance neuronal inhibition to mitigate against diseases that involve an imbalance between excitation and inhibition.


1997 ◽  
Vol 78 (1) ◽  
pp. 539-544 ◽  
Author(s):  
Lisa R. Merlin ◽  
Robert K. S. Wong

Merlin, Lisa R. and Robert K. S. Wong. Role of group I metabotropic glutamate receptors in the patterning of epileptiform activities in vitro. J. Neurophysiol. 78: 539–544, 1997. In guinea pig hippocampal slices, picrotoxin elicited spontaneous epileptiform bursts 300–550 ms in duration. Additional application of ( R,S)-3,5-dihydroxyphenylglycine or ( S)-3-hydroxyphenylglycine, agonists specific for group I metabotropic glutamate receptors(mGluRs), or (1 S,3 R)-1-aminocyclopentane-1,3-dicarboxylicacid, a broad-spectrum mGluR agonist, converted picrotoxin-induced interictal bursts into prolonged discharges measured on the order of seconds. The prolonged discharges induced by selective group I mGluR agonist continued to be produced for hours after agonist removal. The antagonists ( S)-4-carboxyphenylglycine and (+)-α-methyl-4-carboxyphenylglycine had no effect on the duration of picrotoxin-induced interictal bursts. However, after agonist exposure, the persistent prolonged discharges occurring in the absence of agonist were reversibly suppressed by the antagonists, suggesting that the activity is maintained via endogenous activation of group I mGluRs by synaptically released glutamate. Our results suggest that, under some conditions, activation of group I mGluRs produces long-lasting enhancement of synaptic responses, mediated at least in part by autopotentiation of the group I mGluR response itself, which may result in the production of seizure discharges and contribute to epileptogenesis.


2009 ◽  
Vol 207 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Fangfang Yin ◽  
Rebecca Banerjee ◽  
Bobby Thomas ◽  
Ping Zhou ◽  
Liping Qian ◽  
...  

Progranulin (PGRN) is a widely expressed protein involved in diverse biological processes. Haploinsufficiency of PGRN in the human causes tau-negative, ubiquitin-positive frontotemporal dementia (FTD). However, the mechanisms are unknown. To explore the role of PGRN in vivo, we generated PGRN-deficient mice. Macrophages from these mice released less interleukin-10 and more inflammatory cytokines than wild type (WT) when exposed to bacterial lipopolysaccharide. PGRN-deficient mice failed to clear Listeria monocytogenes infection as quickly as WT and allowed bacteria to proliferate in the brain, with correspondingly greater inflammation than in WT. PGRN-deficient macrophages and microglia were cytotoxic to hippocampal cells in vitro, and PGRN-deficient hippocampal slices were hypersusceptible to deprivation of oxygen and glucose. With age, brains of PGRN-deficient mice displayed greater activation of microglia and astrocytes than WT, and their hippocampal and thalamic neurons accumulated cytosolic phosphorylated transactivation response element DNA binding protein–43. Thus, PGRN is a key regulator of inflammation and plays critical roles in both host defense and neuronal integrity. FTD associated with PGRN insufficiency may result from many years of reduced neutrotrophic support together with cumulative damage in association with dysregulated inflammation.


STEMedicine ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. e1 ◽  
Author(s):  
Diletta Pozzi ◽  
Nicolò Meneghetti ◽  
Anjan Roy ◽  
Beatrice Pastore ◽  
Alberto Mazzoni ◽  
...  

BACKGROUND: The spontaneous activity of neuronal networks has been studied in in vitro models such as brain slices and dissociated cultures. However, a comparison between their dynamical properties in these two types of biological samples is still missing and it would clarify the role of architecture in shaping networks’ operation. METHODS: We used calcium imaging to identify clusters of neurons co-activated in hippocampal and cortical slices, as well as in dissociated neuronal cultures, from GAD67-GFP mice. We used statistical tests, power law fitting and neural modelling to characterize the spontaneous events observed. RESULTS:  In slices, we observed intermittency between silent periods, the appearance of Confined Optical Transients (COTs) and of Diffused Optical Transients (DOTs). DOTs in the cortex were preferentially triggered by the activity of neurons located in layer III-IV, poorly coincident with GABAergic neurons. DOTs had a duration of 10.2±0.3 and 8.2±0.4 seconds in cortical and hippocampal slices, respectively, and were blocked by tetrodotoxin, indicating their neuronal origin. The amplitude and duration of DOTs were controlled by NMDA and GABA-A receptors. In dissociated cultures, we observed an increased synchrony in GABAergic neurons and the presence of global synchronous events similar to DOTs, but with a duration shorter than that seen in the native tissues. CONCLUSION: We conclude that DOTs are shaped by the network architecture and by the balance between inhibition and excitation, and that they can be reproduced by network models with a minimal number of parameters.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5543
Author(s):  
Ben van Lier ◽  
Andreas Hierlemann ◽  
Frédéric Knoflach

Dysfunction of the N-methyl-d-aspartate receptor (NMDAR) is thought to play a role in the pathophysiology of neurodevelopmental diseases like schizophrenia. To study the effects of NMDAR dysfunction on synaptic transmission and network oscillations, we used hippocampal tissue of NMDAR subunit GluN2A knockout (KO) mice. Field excitatory postsynaptic potentials were recorded in acute hippocampal slices of adult animals. Synaptic transmission was impaired in GluN2A KO slices compared to wild-type (WT) slices. Further, to investigate whether NMDAR dysfunction would alter neurodevelopment in vitro, we used organotypic hippocampal slice cultures of WT and GluN2A KO mice. Immunostaining performed with cultures kept two, seven, 14, 25 days in vitro (DIV) revealed an increasing expression of parvalbumin (PV) over time. As a functional readout, oscillatory activity induced by the cholinergic agonist carbachol was recorded in cultures kept seven, 13, and 26 DIV using microelectrode arrays. Initial analysis focused on the occurrence of delta, theta, beta and gamma oscillations over genotype, DIV and hippocampal area (CA1, CA3, dentate gyrus (DG)). In a follow-up analysis, we studied the peak frequency and the peak power of each of the four oscillation bands per condition. The occurrence of gamma oscillations displayed an increase by DIV similar to the PV immunostaining. Unlike gamma occurrence, delta, theta, and beta occurrence did not change over time in culture. The peak frequency and peak power in the different bands of the oscillations were not different in slices of WT and GluN2A KO mice. However, the level of PV expression was lower in GluN2A KO compared to WT mice. Given the role of PV-containing fast-spiking basket cells in generation of oscillations and the decreased PV expression in subjects with schizophrenia, the study of gamma oscillations in organotypic hippocampal slices represents a potentially valuable tool for the characterization of novel therapeutic drugs.


1997 ◽  
Vol 77 (5) ◽  
pp. 2293-2299 ◽  
Author(s):  
Enhui Pan ◽  
Janet L. Stringer

Pan, Enhui and Janet L. Stringer. Role of potassium and calcium in the generation of cellular bursts in the dentate gyrus. J. Neurophysiol. 77: 2293–2299, 1997. Epileptiform activity, which appears to be endogenous, has been recorded in the granule cells of the dentate gyrus before the onset of synchronized seizure activity and has been termed cellular bursts. It has been postulated that an increase in input to the dentate gyrus causes a local increase in extracellular K+ concentration ([K+]o) and a decrease in [Ca2+]o that results in this cellular bursting. The first test of this hypothesis is to determine whether the cellular bursts appear in ionic conditions that occur in vivo before the onset of synchronized epileptic activity. This hypothesis was tested in vitro by varying the ionic concentrations in the perfusing solution and recording changes in the granule cells of the dentate gyrus. Intra- and extracellular recordings were made in the dentate gyri of hippocampal slices prepared from anesthetized adult Sprague-Dawley rats. Increasing the extracellular potassium or decreasing the extracellular calcium of the perfusing solution caused three forms of spontaneous activity to appear: depolarizing potentials, action potentials, and cellular bursts. Increasing potassium or decreasing calcium also caused the granule cells to depolarize and reduced their input resistance. No synchronized extracellular field activity was detected. Simultaneously increasing potassium and decreasing calcium caused cellular bursts to appear at concentrations recorded in vivo before the onset of synchronized reverberatory seizure activity.


Sign in / Sign up

Export Citation Format

Share Document