scholarly journals A trait-based ecology to assess the acclimation of a sperm-dependent clonal fish compared to its sexual host

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5896 ◽  
Author(s):  
Christelle Leung ◽  
Sophie Breton ◽  
Bernard Angers

Background Survival in temporally or spatially changing environments is a prerequisite for the perpetuation of a given species. In addition to genetic variation, the role of epigenetic processes is crucial in the persistence of organisms. For instance, mechanisms such as developmental flexibility enable the adjustment of the phenotype of a given individual to changing conditions throughout its development. However, the extent of factors other than genetic variability, like epigenetic processes, in the production of alternative phenotype and the consequences in realized ecological niches is still unclear. Methods In this study, we compared the extent of realized niches between asexual and sexual individuals from different environments. We used a trait-based ecology approach exploiting trophic and locomotive structures to infer the environment that each biotype actually used. More specifically, we compared the morphology of the all-female clonal and sperm-dependent fish Chrosomus eos-neogaeus to that of their sexual host species C. eos in common garden and natural conditions. Results Transfer from natural to controlled conditions resulted in a similar shift in measured morphology for clonal and sexual individuals suggesting comparable level of flexibility in both kinds of organisms. However, clonal, but not sexual, individuals displayed a consistent phenotype when reared in uniform conditions indicating that in absence of genetic variation, one phenotype corresponds to one niche. This contrasted with results from natural conditions where clones were morphologically as variable as sexual individuals within a sampled site. In addition, similar phenotypic changes for both clonal and sexual individuals were observed among the majority of sampled sites, indicating that they responded similarly to the same environments. Discussion Our results indicated that clones can efficiently use different niches and may evolve in a range of environmental conditions comparable to that of a sexual species, thus underlying the importance of factors other than genetic variability, like epigenetic processes, for coping with environmental heterogeneity.

2018 ◽  
Vol 373 (1757) ◽  
pp. 20170429 ◽  
Author(s):  
Anders Forsman

Much research has been devoted to study evolution of local adaptations by natural selection, and to explore the roles of neutral processes and developmental plasticity for patterns of diversity among individuals, populations and species. Some aspects, such as evolution of adaptive variation in phenotypic traits in stable environments, and the role of plasticity in predictable changing environments, are well understood. Other aspects, such as the role of sex differences for evolution in spatially heterogeneous and temporally changing environments and dynamic fitness landscapes, remain elusive. An increased understanding of evolution requires that sex differences in development, physiology, morphology, life-history and behaviours are more broadly considered. Studies of selection should take into consideration that the relationships linking phenotypes to fitness may vary not only according to environmental conditions but also differ between males and females. Such opposing selection, sex-by-environment interaction effects of selection and sex-specific developmental plasticity can have consequences for population differentiation, local adaptations and for the dynamics of polymorphisms. Integrating sex differences in analytical frameworks and population comparisons can therefore illuminate neglected evolutionary drivers and reconcile unexpected patterns. Here, I illustrate these issues using empirical examples from over 20 years of research on colour polymorphic Tetrix subulata and Tetrix undulata pygmy grasshoppers, and summarize findings from observational field studies, manipulation experiments, common garden breeding experiments and population genetics studies. This article is part of the theme issue ‘Linking local adaptation with the evolution of sex differences’.


Zootaxa ◽  
2018 ◽  
Vol 4526 (2) ◽  
pp. 245
Author(s):  
NASSER SANCHOOLI ◽  
ESKANDAR RASTEGAR-POUYANI ◽  
SAEED HOSSEINIAN

The small scaled rock agama, Paralaudakia microlepis, is an agamid lizard distributed across many parts of the Iranian Plateau. In the present paper, our aim is to study the genetic variability among different populations of this species in Iran. Based on the ND4 mitochondrial gene fragment, we uncovered high levels of genetic variability between three main clades of the species in Iran. Based on these results, the South Khorasan and Fars populations diverged firstly and then the Kerman and the Sistan-Baluchestan populations split. This pattern of divergence suggests an important role of the Zagros Mountain in the differentiation among populations of P. microlepis in Iran during the mid-Miocene. The Zagros uplift and subsequent aridification in the Iranian Plateau might have been involved in the variation among populations of this species because they are restricted to specific ecological niches. The greater genetic distances between the Fars and South Khorasan populations indicated that they have the potential to be described as different subspecies of P. microlepis. Comparison of all P. microlepis, P. erythrogastra and P. caucasia populations using both molecular and morphological characters is needed to make a strong taxonomic decision on the clade as a whole. 


2001 ◽  
Vol 21 (6) ◽  
pp. 580-592 ◽  
Author(s):  
Arnold Boonstra ◽  
Dick de Zeeuw ◽  
Paul E. de Jong ◽  
Gerjan Navis

2010 ◽  
Vol 151 (34) ◽  
pp. 1376-1383 ◽  
Author(s):  
Mariann Harangi ◽  
István Balogh ◽  
János Harangi ◽  
György Paragh

A Niemann–Pick C1-like-1 egy szterolfelismerő domént tartalmazó membránfehérje, amelyet nagy számban expresszálnak csúcsi felszínükön a bélhámsejtek. Az utóbbi évek vizsgálatai azt igazolták, hogy ez a fehérje szükséges a szabad koleszterin bejutásához a bélhámsejtekbe a bél lumenéből. Biokémiai vizsgálatok azt igazolták, hogy a Niemann–Pick C1-like-1-hez kötődik az ezetimib, amely egy hatékony koleszterinfelszívódást gátló szer. A bélből történő koleszterinfelszívódás ütemében és az ezetimibkezelés hatékonyságában tapasztalt egyéni eltérések hátterében felmerült néhány Niemann–Pick C1-like-1 génvariáció oki szerepe.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillermo Velo-Antón ◽  
André Lourenço ◽  
Pedro Galán ◽  
Alfredo Nicieza ◽  
Pedro Tarroso

AbstractExplicitly accounting for phenotypic differentiation together with environmental heterogeneity is crucial to understand the evolutionary dynamics in hybrid zones. Species showing intra-specific variation in phenotypic traits that meet across environmentally heterogeneous regions constitute excellent natural settings to study the role of phenotypic differentiation and environmental factors in shaping the spatial extent and patterns of admixture in hybrid zones. We studied three environmentally distinct contact zones where morphologically and reproductively divergent subspecies of Salamandra salamandra co-occur: the pueriparous S. s. bernardezi that is mostly parapatric to its three larviparous subspecies neighbours. We used a landscape genetics framework to: (i) characterise the spatial location and extent of each contact zone; (ii) assess patterns of introgression and hybridization between subspecies pairs; and (iii) examine the role of environmental heterogeneity in the evolutionary dynamics of hybrid zones. We found high levels of introgression between parity modes, and between distinct phenotypes, thus demonstrating the evolution to pueriparity alone or morphological differentiation do not lead to reproductive isolation between these highly divergent S. salamandra morphotypes. However, we detected substantial variation in patterns of hybridization across contact zones, being lower in the contact zone located on a topographically complex area. We highlight the importance of accounting for spatial environmental heterogeneity when studying evolutionary dynamics of hybrid zones.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sharon A. Huws ◽  
Joan E. Edwards ◽  
Wanchang Lin ◽  
Francesco Rubino ◽  
Mark Alston ◽  
...  

Abstract Background Gut microbiomes, such as the rumen, greatly influence host nutrition due to their feed energy-harvesting capacity. We investigated temporal ecological interactions facilitating energy harvesting at the fresh perennial ryegrass (PRG)-biofilm interface in the rumen using an in sacco approach and prokaryotic metatranscriptomic profiling. Results Network analysis identified two distinct sub-microbiomes primarily representing primary (≤ 4 h) and secondary (≥ 4 h) colonisation phases and the most transcriptionally active bacterial families (i.e Fibrobacteriaceae, Selemondaceae and Methanobacteriaceae) did not interact with either sub-microbiome, indicating non-cooperative behaviour. Conversely, Prevotellaceae had most transcriptional activity within the primary sub-microbiome (focussed on protein metabolism) and Lachnospiraceae within the secondary sub-microbiome (focussed on carbohydrate degradation). Putative keystone taxa, with low transcriptional activity, were identified within both sub-microbiomes, highlighting the important synergistic role of minor bacterial families; however, we hypothesise that they may be ‘cheating’ in order to capitalise on the energy-harvesting capacity of other microbes. In terms of chemical cues underlying transition from primary to secondary colonisation phases, we suggest that AI-2-based quorum sensing plays a role, based on LuxS gene expression data, coupled with changes in PRG chemistry. Conclusions In summary, we show that fresh PRG-attached prokaryotes are resilient and adapt quickly to changing niches. This study provides the first major insight into the complex temporal ecological interactions occurring at the plant-biofilm interface within the rumen. The study also provides valuable insights into potential plant breeding strategies for development of the utopian plant, allowing optimal sustainable production of ruminants.


2021 ◽  
Vol 36 (3) ◽  
Author(s):  
Rose Trappes

AbstractNiche construction theory (NCT) aims to transform and unite evolutionary biology and ecology. Much of the debate about NCT has focused on construction. Less attention has been accorded to the niche: what is it, exactly, that organisms are constructing? In this paper I compare and contrast the definition of the niche used in NCT with ecological niche definitions. NCT’s concept of the evolutionary niche is defined as the sum of selection pressures affecting a population. So defined, the evolutionary niche is narrower than the ecological niche. Moreover, when contrasted with a more restricted ecological niche concept, it has a slightly different extension. I point out three kinds of cases in which the evolutionary niche does not coincide with realized ecological niches: extreme habitat degradation, commensalism, and non-limiting or super-abundant resources. These conceptual differences affect the role of NCT in unifying ecology and evolutionary biology.


Sign in / Sign up

Export Citation Format

Share Document