scholarly journals Species turnover reveals hidden effects of decreasing nitrogen deposition in mountain hay meadows

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6347 ◽  
Author(s):  
Tobias Roth ◽  
Lukas Kohli ◽  
Christoph Bühler ◽  
Beat Rihm ◽  
Reto Giulio Meuli ◽  
...  

Nitrogen (N) deposition is a major threat to biodiversity in many habitats. The recent introduction of cleaner technologies in Switzerland has led to a reduction in the emissions of nitrogen oxides, with a consequent decrease in N deposition. We examined different drivers of plant community change, that is, N deposition, climate warming, and land-use change, in Swiss mountain hay meadows, using data from the Swiss biodiversity monitoring program. We compared indicator values of species that disappeared from or colonized a site (species turnover) with the indicator values of randomly chosen species from the same site. While oligotrophic plant species were more likely to colonize, compared to random expectation, we found only weak shifts in plant community composition. In particular, the average nutrient value of plant communities remained stable over time (2003–2017). We found the largest deviations from random expectation in the nutrient values of colonizing species, suggesting that N deposition or other factors that change the nutrient content of soils were important drivers of the species composition change over the last 15 years in Swiss mountain hay meadows. In addition, we observed an overall replacement of species with lower indicator values for temperature with species with higher values. Apparently, the community effects of the replacement of eutrophic species with oligotrophic species was outweighed by climate warming. Our results add to the increasing evidence that plant communities in changing environments may be relatively stable regarding average species richness or average indicator values, but that this apparent stability is often accompanied by a marked turnover of species.

2018 ◽  
Author(s):  
Tobias Roth ◽  
Lukas Kohli ◽  
Christoph Bühler ◽  
Beat Rihm ◽  
Reto Giulio Meuli ◽  
...  

Nitrogen (N) deposition is a major threat to biodiversity in many habitats. The recent introduction of cleaner technologies in Switzerland has led to a reduction in the emissions of nitrogen oxides, with a consequent decrease in N deposition. We examined different drivers of plant community change, i.e. N deposition, climate warming, and land-use change, in Swiss mountain hay meadows, using data from the Swiss biodiversity monitoring program. We compared indicator values of species that disappeared from or colonized a site (species turnover) with the indicator values of randomly chosen species from the same site. While oligotrophic plant species were more likely to colonize, compared to random expectation, we found only weak shifts in plant community composition. In particular, the average nutrient value of plant communities remained stable over time (2003-2017). We found the largest deviations from random expectation in the nutrient values of colonizing species, suggesting that N deposition or other factors that change the nutrient content of soils were important drivers of the species composition change over the last 15 years in Swiss mountain hay meadows. In addition, we observed an overall replacement of species with lower indicator values for temperature with species with higher values. Apparently, the community effects of the replacement of eutrophic species with oligotrophic species was outweighed by climate warming. Our results add to the increasing evidence that plant communities in changing environments may be relatively stable regarding average species richness or average indicator values, but that this apparent stability is often accompanied by a marked turnover of species.


2018 ◽  
Author(s):  
Tobias Roth ◽  
Lukas Kohli ◽  
Christoph Bühler ◽  
Beat Rihm ◽  
Reto Giulio Meuli ◽  
...  

Nitrogen (N) deposition is a major threat to biodiversity in many habitats. The recent introduction of cleaner technologies in Switzerland has led to a reduction in the emissions of nitrogen oxides, with a consequent decrease in N deposition. We examined different drivers of plant community change, i.e. N deposition, climate warming, and land-use change, in Swiss mountain hay meadows, using data from the Swiss biodiversity monitoring program. We compared indicator values of species that disappeared from or colonized a site (species turnover) with the indicator values of randomly chosen species from the same site. While oligotrophic plant species were more likely to colonize, compared to random expectation, we found only weak shifts in plant community composition. In particular, the average nutrient value of plant communities remained stable over time (2003-2017). We found the largest deviations from random expectation in the nutrient values of colonizing species, suggesting that N deposition or other factors that change the nutrient content of soils were important drivers of the species composition change over the last 15 years in Swiss mountain hay meadows. In addition, we observed an overall replacement of species with lower indicator values for temperature with species with higher values. Apparently, the community effects of the replacement of eutrophic species with oligotrophic species was outweighed by climate warming. Our results add to the increasing evidence that plant communities in changing environments may be relatively stable regarding average species richness or average indicator values, but that this apparent stability is often accompanied by a marked turnover of species.


2018 ◽  
Author(s):  
Tobias Roth ◽  
Lukas Kohli ◽  
Christoph Bühler ◽  
Beat Rihm ◽  
Reto Giulio Meuli ◽  
...  

Nitrogen (N) deposition is a major threat to biodiversity in many habitats. The recent introduction of cleaner technologies in Switzerland has led to a reduction in the emissions of nitrogen oxides, with an according decrease in N deposition. We examined different drivers of plant community change, i.e. N deposition, climate warming, and land-use change, in Swiss mountain hay meadows, using data from the Swiss biodiversity monitoring. We compared indicator values of species that disappeared from or colonized a site (species turnover) with the indicator values of randomly chosen species from the same site. While oligotrophic plant species were more likely to colonize, compared to random expectation, we found only weak shifts in plant community structure. In particular, the average nutrient value of plant communities remained stable over time (2003-2017). However, we found that the nutrient values of colonizing species showed the largest deviations from random expectation, suggesting that N deposition or other factors that change the nutrient content of soils were important drivers of the species composition change over the last 15 years in Swiss mountain hay meadows. In addition, we observed an overall replacement of species with lower indicator values for temperature with species with higher values. Apparently, the community effects of the replacement of eutrophic species with oligotrophic species was outweighed by climate warming. Our results add to the increasing evidence that inferring species turnover will generate a far more reliable understanding of the biotic response to changing environments than solely tracking average community composition.


2019 ◽  
Author(s):  
Jennifer D. Wagner ◽  
Daniel J. Peppe ◽  
Jennifer M.K. O'Keefe ◽  
Christopher Dennison

During the early Paleogene the Earth experienced long-term global warming punctuated by several short-term ‘hyperthermal’ events, the most pronounced of which is the Paleocene-Eocene Thermal Maximum (PETM). During this time, tropical climates expanded into extra-tropical areas potentially forming a wide band of ‘paratropical’ forests that are hypothesized to have expanded into the mid-latitude Northern Great Plains (NGP). Relatively little is known about these ‘paratropical’ floras, which would have extended across the Gulf Coastal Plain (GCP). This study assesses the preserved floras from the GCP in Central Texas before and after the PETM to define plant ecosystem changes associated with the hyperthermal event in this region. These floras suggest a high turnover rate, change in plant community composition, and uniform plant communities across the GCP at the Paleocene-Eocene boundary. Paleoecology and paleoclimate estimates from Central Texas PETM floras suggest a warm and wet environment, indicative of tropical seasonal forest to tropical rainforest biomes. Fossil evidence from the GCP combined with data from the NGP and modern tropics suggest that warming during the PETM helped create a ‘paratropical belt’ that extended into the mid-latitudes. Evaluating the response of plant communities to rapid global warming is important for understanding and preparing for current and future global warming and climate change.


2001 ◽  
Vol 79 (8) ◽  
pp. 983-993 ◽  
Author(s):  
David W Beilman

Localized permafrost formation and melt at the southern limit of permafrost has a large effect on boreal bog plant community structure and diversity in continental western Canada (Alberta, Saskatchewan, and Manitoba). Non-metric multidimensional scaling ordinations show that non-permafrost-affected bogs, areas currently underlain by permafrost (frost mounds), and areas of permafrost degradation (internal lawns) have distinct plant communities. Bryophytes respond more strongly than vascular plants to lengthened environmental gradients in the bogs studied. Seventy-two vascular plant and bryophyte species were found, with mean alpha diversity (species richness) similar in bogs and internal lawns (22.6 and 22.1) and lowest on frost mounds (15.6). Beta diversity (species turnover between landforms) is greater for bryophytes (4.22) than vascular plants (2.54). Comparisons within internal lawns show highly variable height above water table, community composition, and species diversity in wet communities and reduced variability as peat accumulates and converges on dry surfaces dominated by Sphagnum fuscum (Schimp.) Klinggr. Overall, localized permafrost dynamics increase bog plant diversity by 47% by introduction of unique dry, shaded (frost mound) and wet, open (internal lawn) conditions absent from non-permafrost-affected bogs, making localized permafrost bogs one of the most bryologically diverse peatland types in western Canada.Key words: peatlands, bryophytes, plant communities, non-metric multidimensional scaling ordination, permafrost, climate change.


2020 ◽  
Vol 118 (2) ◽  
pp. e2008284117
Author(s):  
Philip A. Fay ◽  
Dafeng Hui ◽  
Robert B. Jackson ◽  
Harold P. Collins ◽  
Lara G. Reichmann ◽  
...  

Terrestrial ecosystems are increasingly enriched with resources such as atmospheric CO2 that limit ecosystem processes. The consequences for ecosystem carbon cycling depend on the feedbacks from other limiting resources and plant community change, which remain poorly understood for soil CO2 efflux, JCO2, a primary carbon flux from the biosphere to the atmosphere. We applied a unique CO2 enrichment gradient (250 to 500 µL L−1) for eight years to grassland plant communities on soils from different landscape positions. We identified the trajectory of JCO2 responses and feedbacks from other resources, plant diversity [effective species richness, exp(H)], and community change (plant species turnover). We found linear increases in JCO2 on an alluvial sandy loam and a lowland clay soil, and an asymptotic increase on an upland silty clay soil. Structural equation modeling identified CO2 as the dominant limitation on JCO2 on the clay soil. In contrast with theory predicting limitation from a single limiting factor, the linear JCO2 response on the sandy loam was reinforced by positive feedbacks from aboveground net primary productivity and exp(H), while the asymptotic JCO2 response on the silty clay arose from a net negative feedback among exp(H), species turnover, and soil water potential. These findings support a multiple resource limitation view of the effects of global change drivers on grassland ecosystem carbon cycling and highlight a crucial role for positive or negative feedbacks between limiting resources and plant community structure. Incorporating these feedbacks will improve models of terrestrial carbon sequestration and ecosystem services.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2009 ◽  
pp. 27-53
Author(s):  
A. Yu. Kudryavtsev

Diversity of plant communities in the nature reserve “Privolzhskaya Forest-Steppe”, Ostrovtsovsky area, is analyzed on the basis of the large-scale vegetation mapping data from 2000. The plant community classi­fication based on the Russian ecologic-phytocoenotic approach is carried out. 12 plant formations and 21 associations are distinguished according to dominant species and a combination of ecologic-phytocoenotic groups of species. A list of vegetation classification units as well as the characteristics of theshrub and woody communities are given in this paper.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 252
Author(s):  
Tingting Duan ◽  
Jing Zhang ◽  
Zhengjun Wang

Grassland tourism is a very popular leisure activity in many parts of the world. However, the presence of people in these areas causes disturbance to the local environment and grassland resources. This study analyzes the composition, diversity, and productivity under different levels of disturbance of the plant communities in the Kangxi Grassland Tourist Area and the Yeyahu Wetland Nature Reserve of Beijing, China. It aims to identify indicators of plant communities and their responses to different levels of disturbance. Our analysis shows that the plant community density and coverage have a certain compensatory increase under disturbed conditions. With the increase in disturbances, more drought-tolerant species have appeared (increased by 5.7%), some of which have become the grazing-tolerance indicator species in the trampled grazed area (TGA). For plant community productivity, biomass and height are good indicators for distinguishing different disturbances (p < 0.05). In addition, several diversity indices reveal the change of plant communities from different perspectives (three of the four indices were significant at the p < 0.05 level). For soil parameters, soil water content and organic matter concentration help to indicate different disturbance levels (the former has a 64% change). Moreover, the standard deviation of the plant community and soil parameters is also a good indicator of their spatial variability and disturbance levels, especially for the TGA. Our analysis confirms that the indicators of productivity, diversity, and soil parameters can indicate the disturbance level in each subarea from different perspectives. However, under disturbed conditions, a comprehensive analysis of these indicators is needed before we can accurately understand the state of health of the plant community.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alexia Stokes ◽  
Guillermo Angeles ◽  
Fabien Anthelme ◽  
Eduardo Aranda-Delgado ◽  
Isabelle Barois ◽  
...  

Abstract Objectives Altitude integrates changes in environmental conditions that determine shifts in vegetation, including temperature, precipitation, solar radiation and edaphogenetic processes. In turn, vegetation alters soil biophysical properties through litter input, root growth, microbial and macrofaunal interactions. The belowground traits of plant communities modify soil processes in different ways, but it is not known how root traits influence soil biota at the community level. We collected data to investigate how elevation affects belowground community traits and soil microbial and faunal communities. This dataset comprises data from a temperate climate in France and a twin study was performed in a tropical zone in Mexico. Data description The paper describes soil physical and chemical properties, climatic variables, plant community composition and species abundance, plant community traits, soil microbial functional diversity and macrofaunal abundance and diversity. Data are provided for six elevations (1400–2400 m) ranging from montane forest to alpine prairie. We focused on soil biophysical properties beneath three dominant plant species that structure local vegetation. These data are useful for understanding how shifts in vegetation communities affect belowground processes, such as water infiltration, soil aggregation and carbon storage. Data will also help researchers understand how plant communities adjust to a changing climate/environment.


Sign in / Sign up

Export Citation Format

Share Document