scholarly journals Responses and Indicators of Composition, Diversity, and Productivity of Plant Communities at Different Levels of Disturbance in a Wetland Ecosystem

Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 252
Author(s):  
Tingting Duan ◽  
Jing Zhang ◽  
Zhengjun Wang

Grassland tourism is a very popular leisure activity in many parts of the world. However, the presence of people in these areas causes disturbance to the local environment and grassland resources. This study analyzes the composition, diversity, and productivity under different levels of disturbance of the plant communities in the Kangxi Grassland Tourist Area and the Yeyahu Wetland Nature Reserve of Beijing, China. It aims to identify indicators of plant communities and their responses to different levels of disturbance. Our analysis shows that the plant community density and coverage have a certain compensatory increase under disturbed conditions. With the increase in disturbances, more drought-tolerant species have appeared (increased by 5.7%), some of which have become the grazing-tolerance indicator species in the trampled grazed area (TGA). For plant community productivity, biomass and height are good indicators for distinguishing different disturbances (p < 0.05). In addition, several diversity indices reveal the change of plant communities from different perspectives (three of the four indices were significant at the p < 0.05 level). For soil parameters, soil water content and organic matter concentration help to indicate different disturbance levels (the former has a 64% change). Moreover, the standard deviation of the plant community and soil parameters is also a good indicator of their spatial variability and disturbance levels, especially for the TGA. Our analysis confirms that the indicators of productivity, diversity, and soil parameters can indicate the disturbance level in each subarea from different perspectives. However, under disturbed conditions, a comprehensive analysis of these indicators is needed before we can accurately understand the state of health of the plant community.

2020 ◽  
Vol 50 (12) ◽  
pp. 1259-1267
Author(s):  
Stefan F. Hupperts ◽  
Christopher R. Webster ◽  
Robert E. Froese ◽  
Erik A. Lilleskov ◽  
Amy M. Marcarelli ◽  
...  

Most plant diversity in temperate deciduous forests is found in the ground layer, but nearly all studies comparing plant community assembly using taxonomic, trait, and phylogenetic diversity indices are limited to woody plants. To examine the relationship between short-term ground-layer plant community assembly and disturbance severity, we leveraged a silvicultural experiment that applied a combination of harvest and site preparation treatments in a northern hardwood forest in Michigan, USA. We predicted that after two growing seasons, plant communities would be less sensitive to harvest treatments when compared with site preparation treatments that disturb the rhizosphere and modify rooting substrate. We also predicted that an increase in taxonomic diversity would accompany a decline in trait diversity and phylogenetic diversity. Instead, plant species composition responded similarly to harvest treatment and site preparation treatment. However, our measure of disturbance severity was positively correlated with both trait diversity and taxonomic diversity but negatively correlated with phylogenetic diversity, indicating that increasingly diverse traits and taxonomies along this disturbance severity gradient were comprised of more phylogenetically simple plant communities. Informed management decisions should therefore consider the underlying value of each diversity measure, as taxonomic diversity alone may not be the best metric for assessing plant community assembly.


2020 ◽  
Author(s):  
Katharina Ramskogler ◽  
Svenja Müller ◽  
Bettina Knoflach ◽  
Johann Stötter ◽  
Clemens Geitner ◽  
...  

&lt;p&gt;Glacier forelands are perfect for analysing the development of plant communities from zero onward. According to Matthews (1992), the chronosequence can act as a spatial representation of the temporal sequence. Therefore, it is ideal to analyse changes in landscape and land cover in time slices. Development of plant communities does not only depend on the age of the deposits, but also on topography, microclimate, soil development, and geomorphological processes as well as on biotic interactions. In the long term, permanent plots represent an adequate method to follow the colonisation on differently aged terrain throughout time.&lt;/p&gt;&lt;p&gt;The main research question of the study is: Do cryospheric changes influence plant community development in time and space? During the first study year we were focused on the following questions: i) How fast does a plant community evolve? ii) How many species do occur on different moraine stages? iii) How do soil parameters correlate with primary succession stages?&lt;/p&gt;&lt;p&gt;The study site is located in the southern part of the Central European Alps, Martell Valley (South Tyrol, Italy). We established 12 permanent plot clusters of 2 x 5 m on areas deglaciated between 1985 and 2018, two per retreat area. In each square meter of these clusters, species composition, cover, and number of individuals were sampled. On the ground moraines of the glacier stages 1911 and approximately 1850 we recorded species composition and cover on 10 x 10 m plots (four plots in total). In all plot clusters and plots on the old moraines, soil temperature and soil water potential as well as relevant soil parameters were measured.&lt;/p&gt;&lt;p&gt;We found up to two vascular plant species per square meter on areas ice free for one year and up to 16 vascular plant species per square meter on areas ice free since 1985.&lt;/p&gt;&lt;p&gt;On the moraines of 1911 were up to 39 vascular plant species per plot with a mean cover of 52.5 %. On the moraines of 1850 we found up to 43 vascular plant species with a mean cover of 40 %.&lt;/p&gt;&lt;p&gt;In the next step we will analyse the effects of pioneer, early and late successional species on morphodynamic processes and their response to these processes using functional traits.&lt;/p&gt;&lt;p&gt;Matthews, J.A. (1992): The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge.&lt;/p&gt;


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2009 ◽  
pp. 27-53
Author(s):  
A. Yu. Kudryavtsev

Diversity of plant communities in the nature reserve “Privolzhskaya Forest-Steppe”, Ostrovtsovsky area, is analyzed on the basis of the large-scale vegetation mapping data from 2000. The plant community classi­fication based on the Russian ecologic-phytocoenotic approach is carried out. 12 plant formations and 21 associations are distinguished according to dominant species and a combination of ecologic-phytocoenotic groups of species. A list of vegetation classification units as well as the characteristics of theshrub and woody communities are given in this paper.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 418-419
Author(s):  
Gercino F Virgínio Júnior ◽  
Milaine Poczynek ◽  
Ana Paula Silva ◽  
Ariany Toledo ◽  
Amanda Cezar ◽  
...  

Abstract Different levels and sources of NDF can modify the gastrointestinal microbiome. This study evaluated 18 Holstein calves housed in not-bedded suspended individual cages and fed one of three treatments: 22NDF - conventional starter containing 22% NDF (n = 7); 31NDF - starter with 31% NDF, replacing part of the corn by soybean hull (n = 6); and 22NDF+H - conventional starter with 22% NDF plus coast-cross hay ad libitum (n = 5). All animals received 4 L of milk replacer daily (24% CP; 18.5% fat; diluted to 12.5% solids), divided into two meals, being weaned at 8th week of age. After weaning, animals were housed in tropical shelters, fed with the respective solid diet and coast-cross hay ad libitum for all treatments. To evaluate the microbiome, ruminal fluid samples were collected using a modified Geishauser oral probe at weeks 2, 4, 6, 8 and 10, two hours after the morning feeding, and fecal samples were collected at birth (0) and at weeks 1, 2, 4, 8 and 10. The microbial community was determined by sequencing V3 and V4 region amplicons of the 16S rRNA gene that was amplified by PCR and sequenced by the Illumina MiSeq platform. Ruminal microbiome had no differences in diversity for the effects of weeks, treatments or interaction of both factors (Table 1). In feces, the diversity indices and evenness were higher for 22NDF+H when compared to 22NDF, with no difference for 31NDF. All indices were significantly affected by calves age. At birth, calves had the greatest diversity and richness. Week 1 and 2 had less evenness and diversity. Bacteroidota, Firmicutes_A and Firmicutes_C were the most abundant phylum in rumen and feces. The supply of hay was only effective in modifying the fecal microbiome of dairy calves, suggesting a resilience in the ruminal microbiome.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alexia Stokes ◽  
Guillermo Angeles ◽  
Fabien Anthelme ◽  
Eduardo Aranda-Delgado ◽  
Isabelle Barois ◽  
...  

Abstract Objectives Altitude integrates changes in environmental conditions that determine shifts in vegetation, including temperature, precipitation, solar radiation and edaphogenetic processes. In turn, vegetation alters soil biophysical properties through litter input, root growth, microbial and macrofaunal interactions. The belowground traits of plant communities modify soil processes in different ways, but it is not known how root traits influence soil biota at the community level. We collected data to investigate how elevation affects belowground community traits and soil microbial and faunal communities. This dataset comprises data from a temperate climate in France and a twin study was performed in a tropical zone in Mexico. Data description The paper describes soil physical and chemical properties, climatic variables, plant community composition and species abundance, plant community traits, soil microbial functional diversity and macrofaunal abundance and diversity. Data are provided for six elevations (1400–2400 m) ranging from montane forest to alpine prairie. We focused on soil biophysical properties beneath three dominant plant species that structure local vegetation. These data are useful for understanding how shifts in vegetation communities affect belowground processes, such as water infiltration, soil aggregation and carbon storage. Data will also help researchers understand how plant communities adjust to a changing climate/environment.


2012 ◽  
Vol 468-471 ◽  
pp. 2764-2770
Author(s):  
Shan Lu ◽  
Bo Chen ◽  
Shao Qing Hu ◽  
Jing Jing Zhang ◽  
Jun Hao Jiang ◽  
...  

Urban close-to-nature plant community is a sustainable design and construction philosophy of landscape greenbelt planning. However, there is no explicit guide for constructing close-to-nature plant community Based on the analysis of community structure and characteristics of 10 typical natural plant communities in the West Lake Scenic Area in Hangzhou and summary of the features of natural community, as well as the analysis of plant landscape of Hangzhou Huagangguanyu Park to prove that the close-to-nature man-made plant community and natural plant community are interrelated in respect of vegetation composition and community structure, this paper puts forward to the essential construction methods of the close-to-nature landscape community, providing theoretical basis for research and construction of urban close-to-nature landscape plant community in China.


2013 ◽  
Vol 31 (2) ◽  
pp. 469-482 ◽  
Author(s):  
G. Concenço ◽  
M. Tomazi ◽  
I.V.T. Correia ◽  
S.A. Santos ◽  
L. Galon

In simple terms, a phytosociological survey is a group of ecological evaluation methods whose aim is to provide a comprehensive overview of both the composition and distribution of plant species in a given plant community. To understand the applicability of phytosociological surveys for weed science, as well as their validity, their ecological basis should be understood and the most suitable ones need to be chosen, because cultivated fields present a relatively distinct group of selecting factors when compared to natural plant communities. For weed science, the following sequence of steps is proposed as the most suitable: (1) overall infestation; (2) phytosociological tables/graphs; (3) intra-characterization by diversity; (4) inter-characterization and grouping by cluster analysis. A summary of methods is established in order to assist Weed Science researchers through their steps into the realm of phytosociology.


Koedoe ◽  
1997 ◽  
Vol 40 (2) ◽  
Author(s):  
C.M. Smit ◽  
G.J. Bredenkamp ◽  
N. Van Rooyen ◽  
A.E. Van Wyk ◽  
J.M. Combrinck

A vegetation survey of the Witbank Nature Reserve, comprising 847 hectares, was conducted. Phytosociological data were used to identify plant communities, as well as to determine alpha and beta diversities. Eleven plant communities were recognised, two of these are subdivided into sub- communities, resulting in 14 vegetation units. These communities represent four main vegetation types, namely grassland, woodland, wetland and disturbed vegetation. Grassland communities have the highest plant diversity and wetland vegetation the lowest. Floristic composition indicates that the vegetation of the Rocky Highveld Grassland has affinities to the grassland and savanna biomes and also to the Afromontane vegetation of the Great Escarpment. An ordination scatter diagram shows the distribution of the 14 plant communities or sub-communities along a soil moisture gradient, as well as along a soil depth/surface rock gradient. The sequence of communities along the soil moisture gradient is used for calculating beta-diversity indices. It is concluded that the relatively small size of the Witbank Nature Reserve is unlikely to have significant negative effects on the phytodiversity of the various plant communities. This nature reserve is therefore of considerable importance in conserving a representative sample of the Rocky Highveld Grassland.


2021 ◽  
Vol 9 (11) ◽  
pp. 2339
Author(s):  
Aleksei O. Zverev ◽  
Arina A. Kichko ◽  
Aleksandr G. Pinaev ◽  
Nikolay A. Provorov ◽  
Evgeny E. Andronov

The rhizosphere community represents an “ecological interface” between plant and soil, providing the plant with a number of advantages. Despite close connection and mutual influence in this system, the knowledge about the connection of plant and rhizosphere diversity is still controversial. One of the most valuable factors of this uncertainty is a rough estimation of plant diversity. NGS sequencing can make the estimations of the plant community more precise than classical geobotanical methods. We investigate fallow and crop sites, which are similar in terms of environmental conditions and soil legacy, yet at the same time are significantly different in terms of plant diversity. We explored amplicons of both the plant root mass (ITS1 DNA) and the microbial communities (16S rDNA); determined alpha- and beta-diversity indices and their correlation, and performed differential abundance analysis. In the analysis, there is no correlation between the alpha-diversity indices of plants and the rhizosphere microbial communities. The beta-diversity between rhizosphere microbial communities and plant communities is highly correlated (R = 0.866, p = 0.01). ITS1 sequencing is effective for the description of plant root communities. There is a connection between rhizosphere communities and the composition of plants, but on the alpha-diversity level we found no correlation. In the future, the connection of alpha-diversities should be explored using ITS1 sequencing, even in more similar plant communities—for example, in different synusia.


Sign in / Sign up

Export Citation Format

Share Document