scholarly journals Determination of the evolutionary pressure onCamellia oleiferaon Hainan Island using the complete chloroplast genome sequence

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7210 ◽  
Author(s):  
Wan Zhang ◽  
Yunlin Zhao ◽  
Guiyan Yang ◽  
Jiao Peng ◽  
Shuwen Chen ◽  
...  

Camellia oleiferais one of the four largest woody edible oil plants in the world with high ecological and medicinal values. Due to frequent interspecific hybridization, it was difficult to study its genetics and evolutionary history. This study usedC. oleiferathat was collected on Hainan Island to conduct our research. The unique island environment makes the quality of tea oil higher than that of other species grown in the mainland. Moreover, a long-term geographic isolation might affect gene structure. In order to better understand the molecular biology of this species, protect excellent germplasm resources, and promote the population genetics and phylogenetic studies ofCamelliaplants, high-throughput sequencing technology was used to obtain the chloroplast genome sequence of HainanC. oleifera. The results showed that the whole chloroplast genome ofC. oleiferain Hainan was 156,995 bp in length, with a typical quadripartite structure of a large single copy (LSC) region of 86,648 bp, a small single copy (SSC) region of 18,297 bp, and a pair of inverted repeats (IRs) of 26,025 bp. The whole genome encoded a total of 141 genes (115 different genes), including 88 protein-coding genes, 45 tRNA genes, and eight rRNA genes. Among these genes, nine genes contained one intron, two genes contained two introns, and four overlapping genes were also detected. The total GC content of HainanC. oleifera’s chloroplast genome was 37.29%. The chloroplast genome structure characteristics of HainanC. oleiferawere compared with mainlandC. oleiferaand those of the other eight closely related Theaceae species; it was found that the contractions and expansions of the IR/LSC and IR/SSC regions affected the length of chloroplast genome. The chloroplast genome sequences of these Theaceae species were highly similar. A comparative analysis indicated that the Theaceae species were conserved in structure and evolution. A total of 51 simple sequence repeat (SSR) loci were detected in the chloroplast genome of HainanC. oleifera, and allCamelliaplants did not have pentanucleotide repeats, which could be used as a good marker in phylogenetic studies. We also detected seven long repeats, the base composition of all repeats was biased toward A/T, which was consistent with the codon bias. It was found that HainanC. oleiferahad a similar evolutionary relationship withC. crapnelliana, through the use of codons and phylogenetic analysis. This study can provide an effective genomic resource for the evolutionary history of Theaceae family.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6244 ◽  
Author(s):  
Simon Pfanzelt ◽  
Dirk C. Albach ◽  
K. Bernhard von Hagen

Astelia pumila (G.Forst.) Gaudich. (Asteliaceae, Asparagales) is a major element of West Patagonian cushion peat bog vegetation. With the aim to identify appropriate chloroplast markers for the use in a phylogeographic study, the complete chloroplast genomes of five A. pumila accessions from almost the entire geographical range of the species were assembled and screened for variable positions. The chloroplast genome sequence was obtained via a mapping approach, using Eustrephus latifolius (Asparagaceae) as a reference. The chloroplast genome of A. pumila varies in length from 158,215 bp to 158,221 bp, containing a large single copy region of 85,981–85,983 bp, a small single copy region of 18,182–18,186 bp and two inverted repeats of 27,026 bp. Genome annotation predicted a total of 113 genes, including 30 tRNA and four rRNA genes. Sequence comparisons revealed a very low degree of intraspecific genetic variability, as only 37 variable sites (18 indels, 18 single nucleotide polymorphisms, one 3-bp mutation)—most of them autapomorphies—were found among the five assembled chloroplast genomes. A Maximum Likelihood analysis, based on whole chloroplast genome sequences of several Asparagales accessions representing six of the currently recognized 14 families (sensu APG IV), confirmed the phylogenetic position of A. pumila. The chloroplast genome of A. pumila is the first to be reported for a member of the astelioid clade (14 genera with c. 215 species), a basally branching group within Asparagales.


2020 ◽  
Author(s):  
Gurusamy Raman ◽  
KyuTae Park ◽  
Joo Hwan Kim ◽  
SeonJoo Park

Abstract Background: The invasive alien species, Xanthium spinosum has been used as a traditional Chinese medicine for many years. Unfortunately, there are no extensive molecular studies for this plant. Results: Here, the complete chloroplast genome sequence of X. spinosum was assembled and analyzed. The cp genome of X. spinosum was 152,422 bp and possessed quadripartite circular structure. The cp genome contained 115 unique genes, including 80 protein-coding genes, 31 tRNA genes and 4 rRNA genes. Comparative analysis revealed that X. spinosum encoded a higher number of repeats (999 repeats) and 701 SSRs in their cp genome. Also, fourteen divergences (Pi > 0.03) were found in the intergenic regions. The accD gene underwent positive selection within Heliantheae, which contributes to further investigation of the adaptive plant evolution in the ecosystem. Additionally, the phylogenetic analysis revealed that Parthenium is a sister clade to both Xanthium and Ambrosia and it is an early-diverging lineage of subtribe Ambrosiinae though it supports with very weak bootstrap value. Conclusion: The identified hotspot regions were thought to be useful molecular markers for resolving phylogenetic relationships and species validation of Xanthium.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2101 ◽  
Author(s):  
Tong-Jian Liu ◽  
Cai-Yun Zhang ◽  
Hai-Fei Yan ◽  
Lu Zhang ◽  
Xue-Jun Ge ◽  
...  

Species-rich genusPrimulaL. is a typical plant group with which to understand genetic variance between species in different levels of relationships. Chloroplast genome sequences are used to be the information resource for quantifying this difference and reconstructing evolutionary history. In this study, we reported the complete chloroplast genome sequence ofPrimula sinensisand compared it with other related species. This genome of chloroplast showed a typical circular quadripartite structure with 150,859 bp in sequence length consisting of 37.2% GC base. Two inverted repeated regions (25,535 bp) were separated by a large single-copy region (82,064 bp) and a small single-copy region (17,725 bp). The genome consists of 112 genes, including 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Among them, seven coding genes, seven tRNA genes and four rRNA genes have two copies due to their locations in the IR regions. TheaccDandinfAgenes lacking intact open reading frames (ORF) were identified as pseudogenes. SSR and sequence variation analyses were also performed on the plastome ofPrimula sinensis, comparing with another available plastome ofP. poissonii. The four most variable regions,rpl36–rps8,rps16–trnQ,trnH–psbAandndhC–trnV, were identified. Phylogenetic relationship estimates using three sub-datasets extracted from a matrix of 57 protein-coding gene sequences showed the identical result that was consistent with previous studies. A transcript found fromP. sinensistranscriptome showed a high similarity to plastidaccDfunctional region and was identified as a putative plastid transit peptide at the N-terminal region. The result strongly suggested that plastidaccDhas been functionally transferred to the nucleus inP. sinensis.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1354
Author(s):  
Slimane Khayi ◽  
Fatima Gaboun ◽  
Stacy Pirro ◽  
Tatiana Tatusova ◽  
Abdelhamid El Mousadik ◽  
...  

Argania spinosa (Sapotaceae), an important endemic Moroccan oil tree, is a primary source of argan oil, which has numerous dietary and medicinal proprieties. The plant species occupies the mid-western part of Morocco and provides great environmental and socioeconomic benefits. The complete chloroplast (cp) genome of A. spinosa was sequenced, assembled, and analyzed in comparison with those of two Sapotaceae members. The A. spinosa cp genome is 158,848 bp long, with an average GC content of 36.8%. The cp genome exhibits a typical quadripartite and circular structure consisting of a pair of inverted regions (IR) of 25,945 bp in length separating small single-copy (SSC) and large single-copy (LSC) regions of 18,591 and 88,367 bp, respectively. The annotation of A. spinosa cp genome predicted 130 genes, including 85 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. A total of 44 long repeats and 88 simple sequence repeats (SSR) divided into mononucleotides (76), dinucleotides (7), trinucleotides (3), tetranucleotides (1), and hexanucleotides (1) were identified in the A. spinosa cp genome. Phylogenetic analyses using the maximum likelihood (ML) method were performed based on 69 protein-coding genes from 11 species of Ericales. The results confirmed the close position of A. spinosa to the Sideroxylon genus, supporting the revisiting of its taxonomic status. The complete chloroplast genome sequence will be valuable for further studies on the conservation and breeding of this medicinally and culinary important species and also contribute to clarifying the phylogenetic position of the species within Sapotaceae.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 61 ◽  
Author(s):  
Huyen-Trang Vu ◽  
Ngan Tran ◽  
Thanh-Diem Nguyen ◽  
Quoc-Luan Vu ◽  
My-Huyen Bui ◽  
...  

Paphiopedilum delenatii is a native orchid of Vietnam with highly attractive floral traits. Unfortunately, it is now listed as a critically endangered species with a few hundred individuals remaining in nature. In this study, we performed next-generation sequencing of P. delenatii and assembled its complete chloroplast genome. The whole chloroplast genome of P. delenatii was 160,955 bp in size, 35.6% of which was GC content, and exhibited typical quadripartite structure of plastid genomes with four distinct regions, including the large and small single-copy regions and a pair of inverted repeat regions. There were, in total, 130 genes annotated in the genome: 77 coding genes, 39 tRNA genes, 8 rRNA genes, and 6 pseudogenes. The loss of ndh genes and variation in inverted repeat (IR) boundaries as well as data of simple sequence repeats (SSRs) and divergent hotspots provided useful information for identification applications and phylogenetic studies of Paphiopedilum species. Whole chloroplast genomes could be used as an effective super barcode for species identification or for developing other identification markers, which subsequently serves the conservation of Paphiopedilum species.


Author(s):  
Inkyu Park ◽  
Wook-Jin Kim ◽  
Sang-Min Yeo ◽  
Goya Choi ◽  
Young-Min Kang ◽  
...  

The genus Fritillaria belongs to the widely distributed family Liliaceae. The bulbs of Fritillaria ussuriensis and Fritillaria cirrhosa are valuable herbaceous medicinal ingredients. However, they are still used indiscriminately in herbal medicine. Identification and molecular phylogenic analysis of Fritillaria species is therefore required. Here, we report the complete chloroplast (cp) genome sequences of F. ussuriensis and F. cirrhosa. The two Fritillaria cp genomes were 151,524 and 151,083 bp in length, respectively, including a pair of inverted repeat regions (52,678 and 52,156 bp) separated by a large single copy region (81,732 and 81,390 bp) and small single copy region (17,114 and 17,537 bp). A total of 111 genes in F. ussuriensis and 112 in F. cirrhosa comprised 77 protein-coding genes in F. ussuriensis and 78 in F. cirrhosa, 30 tRNA genes, and four rRNA genes. The gene order, content, and orientation of the two Fritillaria cp genomes exhibited the general structure of flowering plants, and were similar to those of other Fritillaria species. Comparison of the six Fritillaria species’ cp genomes indicated seven highly divergent regions in intergenic spacers and in the matK, rpoC1, rpoC2, ycf1, ycf2, ndhD, and ndhF coding regions. We established the position of the six species through phylogenic analysis. The complete chloroplast genome sequences of two Fritillaria species will be useful genomics resources for identification of Fritillaria species and for studying the phylogenetic relationship among Fritillaria species within the Liliaceae family.


2019 ◽  
Vol 48 (4) ◽  
pp. 1083-1089
Author(s):  
Yancai Shi ◽  
Shaofeng Jiang ◽  
Shilian Huang

Hybrid (Cynodonn dactylon × C. transvaalensis) is a widely distributed turfgrass and shows a great value of environment, horticulture and economic. Though, the chloroplast genome of C. dactylon has been reported, it might be helpful finding reasons that triploid bermudagrass shows a better drought and trampling tolerance than common bermudagrass through comparing chloroplast genome analysis. The present results showed the complete chloroplast genome of the C. dactylon × C. transvaalensis is 134655 bp in length. The tetramerous genome contained a large single copy (LSC) region (79,998 bp), a small single copy (SSC) region (12,517 bp), and a pair of inverted repeat (IR) regions (42,140 bp). In the chloroplast genome, 116 genes were predicted, including 83 protein-coding, 29 tRNA and 4 rRNA genes. Furthermore, a total of 80 repeat sequences were identified. Only 0.23% intergenicnon-collinear sequences were found between the chloroplast genome of Cynodon dactylon × C. transvaalensis and Cynodon dactylon.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 296 ◽  
Author(s):  
Jacinta N. Munyao ◽  
Xiang Dong ◽  
Jia-Xin Yang ◽  
Elijah M. Mbandi ◽  
Vincent O. Wanga ◽  
...  

The genus Chlorophytum includes many economically important species well-known for medicinal, ornamental, and horticultural values. However, to date, few molecular genomic resources have been reported for this genus. Therefore, there is limited knowledge of phylogenetic studies, and the available chloroplast (cp) genome of Chlorophytum (C. rhizopendulum) does not provide enough information on this genus. In this study, we present genomic resources for C. comosum and C. gallabatense, which had lengths of 154,248 and 154,154 base pairs (bp), respectively. They had a pair of inverted repeats (IRa and IRb) of 26,114 and 26,254 bp each in size, separating the large single-copy (LSC) region of 84,004 and 83,686 bp from the small single-copy (SSC) region of 18,016 and 17,960 bp in C. comosum and C. gallabatense, respectively. There were 112 distinct genes in each cp genome, which were comprised of 78 protein-coding genes, 30 tRNA genes, and four rRNA genes. The comparative analysis with five other selected species displayed a generally high level of sequence resemblance in structural organization, gene content, and arrangement. Additionally, the phylogenetic analysis confirmed the previous phylogeny and produced a phylogenetic tree with similar topology. It showed that the Chlorophytum species (C. comosum, C. gallabatense and C. rhizopendulum) were clustered together in the same clade with a closer relationship than other plants to the Anthericum ramosum. This research, therefore, presents valuable records for further molecular evolutionary and phylogenetic studies which help to fill the gap in genomic resources and resolve the taxonomic complexes of the genus.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1405
Author(s):  
Gurusamy Raman ◽  
SeonJoo Park

The plant “False Lily of the Valley”, Speirantha gardenii is restricted to south-east China and considered as an endemic plant. Due to its limited availability, this plant was less studied. Hence, this study is focused on its molecular studies, where we have sequenced the complete chloroplast genome of S. gardenii and this is the first report on the chloroplast genome sequence of Speirantha. The complete S. gardenii chloroplast genome is of 156,869 bp in length with 37.6% GC, which included a pair of inverted repeats (IRs) each of 26,437 bp that separated a large single-copy (LSC) region of 85,368 bp and a small single-copy (SSC) region of 18,627 bp. The chloroplast genome comprises 81 protein-coding genes, 30 tRNA and four rRNA unique genes. Furthermore, a total of 699 repeats and 805 simple-sequence repeats (SSRs) markers are identified in the genome. Additionally, KA/KS nucleotide substitution analysis showed that seven protein-coding genes have highly diverged and identified nine amino acid sites under potentially positive selection in these genes. Phylogenetic analyses suggest that S. gardenii species has a closer genetic relationship to the Reineckea, Rohdea and Convallaria genera. The present study will provide insights into developing a lineage-specific marker for genetic diversity and gene evolution studies in the Nolinoideae taxa.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 608
Author(s):  
Sang-Chul Kim ◽  
Jei-Wan Lee ◽  
Byoung-Ki Choi

In the present study, chloroplast genome sequences of four species of Symplocos (S. chinensis for. pilosa, S. prunifolia, S. coreana, and S. tanakana) from South Korea were obtained by Ion Torrent sequencing and compared with the sequences of three previously reported Symplocos chloroplast genomes from different species. The length of the Symplocos chloroplast genome ranged from 156,961 to 157,365 bp. Overall, 132 genes including 87 functional genes, 37 tRNA genes, and eight rRNA genes were identified in all Symplocos chloroplast genomes. The gene order and contents were highly similar across the seven species. The coding regions were more conserved than the non-coding regions, and the large single-copy and small single-copy regions were less conserved than the inverted repeat regions. We identified five new hotspot regions (rbcL, ycf4, psaJ, rpl22, and ycf1) that can be used as barcodes or species-specific Symplocos molecular markers. These four novel chloroplast genomes provide basic information on the plastid genome of Symplocos and enable better taxonomic characterization of this genus.


Sign in / Sign up

Export Citation Format

Share Document