scholarly journals Seven Complete Chloroplast Genomes from Symplocos: Genome Organization and Comparative Analysis

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 608
Author(s):  
Sang-Chul Kim ◽  
Jei-Wan Lee ◽  
Byoung-Ki Choi

In the present study, chloroplast genome sequences of four species of Symplocos (S. chinensis for. pilosa, S. prunifolia, S. coreana, and S. tanakana) from South Korea were obtained by Ion Torrent sequencing and compared with the sequences of three previously reported Symplocos chloroplast genomes from different species. The length of the Symplocos chloroplast genome ranged from 156,961 to 157,365 bp. Overall, 132 genes including 87 functional genes, 37 tRNA genes, and eight rRNA genes were identified in all Symplocos chloroplast genomes. The gene order and contents were highly similar across the seven species. The coding regions were more conserved than the non-coding regions, and the large single-copy and small single-copy regions were less conserved than the inverted repeat regions. We identified five new hotspot regions (rbcL, ycf4, psaJ, rpl22, and ycf1) that can be used as barcodes or species-specific Symplocos molecular markers. These four novel chloroplast genomes provide basic information on the plastid genome of Symplocos and enable better taxonomic characterization of this genus.

Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 61 ◽  
Author(s):  
Huyen-Trang Vu ◽  
Ngan Tran ◽  
Thanh-Diem Nguyen ◽  
Quoc-Luan Vu ◽  
My-Huyen Bui ◽  
...  

Paphiopedilum delenatii is a native orchid of Vietnam with highly attractive floral traits. Unfortunately, it is now listed as a critically endangered species with a few hundred individuals remaining in nature. In this study, we performed next-generation sequencing of P. delenatii and assembled its complete chloroplast genome. The whole chloroplast genome of P. delenatii was 160,955 bp in size, 35.6% of which was GC content, and exhibited typical quadripartite structure of plastid genomes with four distinct regions, including the large and small single-copy regions and a pair of inverted repeat regions. There were, in total, 130 genes annotated in the genome: 77 coding genes, 39 tRNA genes, 8 rRNA genes, and 6 pseudogenes. The loss of ndh genes and variation in inverted repeat (IR) boundaries as well as data of simple sequence repeats (SSRs) and divergent hotspots provided useful information for identification applications and phylogenetic studies of Paphiopedilum species. Whole chloroplast genomes could be used as an effective super barcode for species identification or for developing other identification markers, which subsequently serves the conservation of Paphiopedilum species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jin Xu ◽  
Chen Liu ◽  
Yun Song ◽  
Mingfu Li

The genus Pennisetum (Poaceae) is both a forage crop and staple food crop in the tropics. In this study, we obtained chloroplast genome sequences of four species of Pennisetum (P. alopecuroides, P. clandestinum, P. glaucum, and P. polystachion) using Illumina sequencing. These chloroplast genomes have circular structures of 136,346–138,119 bp, including a large single-copy region (LSC, 79,380–81,186 bp), a small single-copy region (SSC, 12,212–12,409 bp), and a pair of inverted repeat regions (IRs, 22,284–22,372 bp). The overall GC content of these chloroplast genomes was 38.6–38.7%. The complete chloroplast genomes contained 110 different genes, including 76 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analysis of nucleotide variability identified nine intergenic spacer regions (psbA-matK, matK-rps16, trnN-trnT, trnY-trnD-psbM, petN-trnC, rbcL-psaI, petA-psbJ, psbE-petL, and rpl32-trnL), which may be used as potential DNA barcodes in future species identification and evolutionary analysis of Pennisetum. The phylogenetic analysis revealed a close relationship between P. polystachion and P. glaucum, followed by P. clandestinum and P. alopecuroides. The completed genomes of this study will help facilitate future research on the phylogenetic relationships and evolution of Pennisetum species.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3919 ◽  
Author(s):  
Hui Cheng ◽  
Jinfeng Li ◽  
Hong Zhang ◽  
Binhua Cai ◽  
Zhihong Gao ◽  
...  

Compared with other members of the family Rosaceae, the chloroplast genomes ofFragariaspecies exhibit low variation, and this situation has limited phylogenetic analyses; thus, complete chloroplast genome sequencing ofFragariaspecies is needed. In this study, we sequenced the complete chloroplast genome ofF. × ananassa‘Benihoppe’ using the Illumina HiSeq 2500-PE150 platform and then performed a combination ofde novoassembly and reference-guided mapping of contigs to generate complete chloroplast genome sequences. The chloroplast genome exhibits a typical quadripartite structure with a pair of inverted repeats (IRs, 25,936 bp) separated by large (LSC, 85,531 bp) and small (SSC, 18,146 bp) single-copy (SC) regions. The length of theF. × ananassa‘Benihoppe’ chloroplast genome is 155,549 bp, representing the smallestFragariachloroplast genome observed to date. The genome encodes 112 unique genes, comprising 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Comparative analysis of the overall nucleotide sequence identity among ten complete chloroplast genomes confirmed that for both coding and non-coding regions in Rosaceae, SC regions exhibit higher sequence variation than IRs. The Ka/Ks ratio of most genes was less than 1, suggesting that most genes are under purifying selection. Moreover, the mVISTA results also showed a high degree of conservation in genome structure, gene order and gene content inFragaria, particularly among three octoploid strawberries which wereF. × ananassa‘Benihoppe’,F.chiloensis(GP33) andF.virginiana(O477). However, when the sequences of the coding and non-coding regions ofF. × ananassa‘Benihoppe’ were compared in detail with those ofF.chiloensis(GP33) andF.virginiana(O477), a number of SNPs and InDels were revealed by MEGA 7. Six non-coding regions (trnK-matK,trnS-trnG,atpF-atpH,trnC-petN,trnT-psbDandtrnP-psaJ) with a percentage of variable sites greater than 1% and no less than five parsimony-informative sites were identified and may be useful for phylogenetic analysis of the genusFragaria.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9132
Author(s):  
Shuilian He ◽  
Yang Yang ◽  
Ziwei Li ◽  
Xuejiao Wang ◽  
Yanbing Guo ◽  
...  

The horticulturally important genus Zantedeschia (Araceae) comprises eight species of herbaceous perennials. We sequenced, assembled and analyzed the chloroplast (cp) genomes of four species of Zantedeschia (Z. aethiopica, Z. odorata, Z. elliottiana, and Z. rehmannii) to investigate the structure of the cp genome in the genus. According to our results, the cp genome of Zantedeschia ranges in size from 169,065 bp (Z. aethiopica) to 175,906 bp (Z. elliottiana). We identified a total of 112 unique genes, including 78 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosomal RNA (rRNA) genes. Comparison of our results with cp genomes from other species in the Araceae suggests that the relatively large sizes of the Zantedeschia cp genomes may result from inverted repeats (IR) region expansion. The sampled Zantedeschia species formed a monophylogenetic clade in our phylogenetic analysis. Furthermore, the long single copy (LSC) and short single copy (SSC) regions in Zantedeschia are more divergent than the IR regions in the same genus, and non-coding regions showed generally higher divergence than coding regions. We identified a total of 410 cpSSR sites from the four Zantedeschia species studied. Genetic diversity analyses based on four polymorphic SSR markers from 134 cultivars of Zantedeschia suggested that high genetic diversity (I = 0.934; Ne = 2.371) is present in the Zantedeschia cultivars. High genetic polymorphism from the cpSSR region suggests that cpSSR could be an effective tool for genetic diversity assessment and identification of Zantedeschia varieties.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yongtan Li ◽  
Yan Dong ◽  
Yichao Liu ◽  
Xiaoyue Yu ◽  
Minsheng Yang ◽  
...  

In this study, we assembled and annotated the chloroplast (cp) genome of the Euonymus species Euonymus fortunei, Euonymus phellomanus, and Euonymus maackii, and performed a series of analyses to investigate gene structure, GC content, sequence alignment, and nucleic acid diversity, with the objectives of identifying positive selection genes and understanding evolutionary relationships. The results indicated that the Euonymus cp genome was 156,860–157,611bp in length and exhibited a typical circular tetrad structure. Similar to the majority of angiosperm chloroplast genomes, the results yielded a large single-copy region (LSC) (85,826–86,299bp) and a small single-copy region (SSC) (18,319–18,536bp), separated by a pair of sequences (IRA and IRB; 26,341–26,700bp) with the same encoding but in opposite directions. The chloroplast genome was annotated to 130–131 genes, including 85–86 protein coding genes, 37 tRNA genes, and eight rRNA genes, with GC contents of 37.26–37.31%. The GC content was variable among regions and was highest in the inverted repeat (IR) region. The IR boundary of Euonymus happened expanding resulting that the rps19 entered into IR region and doubled completely. Such fluctuations at the border positions might be helpful in determining evolutionary relationships among Euonymus. The simple-sequence repeats (SSRs) of Euonymus species were composed primarily of single nucleotides (A)n and (T)n, and were mostly 10–12bp in length, with an obvious A/T bias. We identified several loci with suitable polymorphism with the potential use as molecular markers for inferring the phylogeny within the genus Euonymus. Signatures of positive selection were seen in rpoB protein encoding genes. Based on data from the whole chloroplast genome, common single copy genes, and the LSC, SSC, and IR regions, we constructed an evolutionary tree of Euonymus and related species, the results of which were consistent with traditional taxonomic classifications. It showed that E. fortunei sister to the Euonymus japonicus, whereby E. maackii appeared as sister to Euonymus hamiltonianus. Our study provides important genetic information to support further investigations into the phylogenetic development and adaptive evolution of Euonymus species.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Junjun Yao ◽  
Fangyu Zhao ◽  
Yuanjiang Xu ◽  
Kaihui Zhao ◽  
Hong Quan ◽  
...  

Dracocephalum tanguticum and Dracocephalum moldavica are important herbs from Lamiaceae and have great medicinal value. We used the Illumina sequencing technology to sequence the complete chloroplast genome of D. tanguticum and D. moldavica and then conducted de novo assembly. The two chloroplast genomes have a typical quadripartite structure, with the gene’s lengths of 82,221 bp and 81,450 bp, large single-copy region’s (LSC) lengths of 82,221 bp and 81,450 bp, and small single-copy region’s (SSC) lengths of 17,363 bp and 17,066 bp, inverted repeat region’s (IR) lengths of 51,370 bp and 51,352 bp, respectively. The GC content of the two chloroplast genomes was 37.80% and 37.83%, respectively. The chloroplast genomes of the two plants encode 133 and 132 genes, respectively, among which there are 88 and 87 protein-coding genes, respectively, as well as 37 tRNA genes and 8 rRNA genes. Among them, the rps2 gene is unique to D. tanguticum, which is not found in D. moldavica. Through SSR analysis, we also found 6 mutation hotspot regions, which can be used as molecular markers for taxonomic studies. Phylogenetic analysis showed that Dracocephalum was more closely related to Mentha.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shoubo Tian ◽  
Panling Lu ◽  
Zhaohui Zhang ◽  
Jian Qiang Wu ◽  
Hui Zhang ◽  
...  

Abstract Background Lima bean (Phaseolus lunatus L.) is a member of subfamily Phaseolinae belonging to the family Leguminosae and an important source of plant proteins for the human diet. As we all know, lima beans have important economic value and great diversity. However, our knowledge of the chloroplast genome level of lima beans is limited. Results The chloroplast genome of lima bean was obtained by Illumina sequencing technology for the first time. The Cp genome with a length of 150,902 bp, including a pair of inverted repeats (IRA and IRB 26543 bp each), a large single-copy (LSC 80218 bp) and a small single-copy region (SSC 17598 bp). In total, 124 unique genes including 82 protein-coding genes, 34 tRNA genes, and 8 rRNA genes were identified in the P. lunatus Cp genome. A total of 61 long repeats and 290 SSRs were detected in the lima bean Cp genome. It has a typical 50 kb inversion of the Leguminosae family and an 70 kb inversion to subtribe Phaseolinae. rpl16, accD, petB, rsp16, clpP, ndhA, ndhF and ycf1 genes in coding regions was found significant variation, the intergenic regions of trnk-rbcL, rbcL-atpB, ndhJ-rps4, psbD-rpoB, atpI-atpA, atpA-accD, accD-psbJ, psbE-psbB, rsp11-rsp19, ndhF-ccsA was found in a high degree of divergence. A phylogenetic analysis showed that P. lunatus appears to be more closely related to P. vulgaris, V.unguiculata and V. radiata. Conclusions The characteristics of the lima bean Cp genome was identified for the first time, these results will provide useful insights for species identification, evolutionary studies and molecular biology research.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8450 ◽  
Author(s):  
Sunan Huang ◽  
Xuejun Ge ◽  
Asunción Cano ◽  
Betty Gaby Millán Salazar ◽  
Yunfei Deng

The genus Dicliptera (Justicieae, Acanthaceae) consists of approximately 150 species distributed throughout the tropical and subtropical regions of the world. Newly obtained chloroplast genomes (cp genomes) are reported for five species of Dilciptera (D. acuminata, D. peruviana, D. montana, D. ruiziana and D. mucronata) in this study. These cp genomes have circular structures of 150,689–150,811 bp and exhibit quadripartite organizations made up of a large single copy region (LSC, 82,796–82,919 bp), a small single copy region (SSC, 17,084–17,092 bp), and a pair of inverted repeat regions (IRs, 25,401–25,408 bp). Guanine-Cytosine (GC) content makes up 37.9%–38.0% of the total content. The complete cp genomes contain 114 unique genes, including 80 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analyses of nucleotide variability (Pi) reveal the five most variable regions (trnY-GUA-trnE-UUC, trnG-GCC, psbZ-trnG-GCC, petN-psbM, and rps4-trnL-UUA), which may be used as molecular markers in future taxonomic identification and phylogenetic analyses of Dicliptera. A total of 55-58 simple sequence repeats (SSRs) and 229 long repeats were identified in the cp genomes of the five Dicliptera species. Phylogenetic analysis identified a close relationship between D. ruiziana and D. montana, followed by D. acuminata, D. peruviana, and D. mucronata. Evolutionary analysis of orthologous protein-coding genes within the family Acanthaceae revealed only one gene, ycf15, to be under positive selection, which may contribute to future studies of its adaptive evolution. The completed genomes are useful for future research on species identification, phylogenetic relationships, and the adaptive evolution of the Dicliptera species.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2137 ◽  
Author(s):  
Xiang-Xiao Meng ◽  
Yan-Fang Xian ◽  
Li Xiang ◽  
Dong Zhang ◽  
Yu-Hua Shi ◽  
...  

The genus Sanguisorba, which contains about 30 species around the world and seven species in China, is the source of the medicinal plant Sanguisorba officinalis, which is commonly used as a hemostatic agent as well as to treat burns and scalds. Here we report the complete chloroplast (cp) genome sequences of four Sanguisorba species (S. officinalis, S. filiformis, S. stipulata, and S. tenuifolia var. alba). These four Sanguisorba cp genomes exhibit typical quadripartite and circular structures, and are 154,282 to 155,479 bp in length, consisting of large single-copy regions (LSC; 84,405–85,557 bp), small single-copy regions (SSC; 18,550–18,768 bp), and a pair of inverted repeats (IRs; 25,576–25,615 bp). The average GC content was ~37.24%. The four Sanguisorba cp genomes harbored 112 different genes arranged in the same order; these identical sections include 78 protein-coding genes, 30 tRNA genes, and four rRNA genes, if duplicated genes in IR regions are counted only once. A total of 39–53 long repeats and 79–91 simple sequence repeats (SSRs) were identified in the four Sanguisorba cp genomes, which provides opportunities for future studies of the population genetics of Sanguisorba medicinal plants. A phylogenetic analysis using the maximum parsimony (MP) method strongly supports a close relationship between S. officinalis and S. tenuifolia var. alba, followed by S. stipulata, and finally S. filiformis. The availability of these cp genomes provides valuable genetic information for future studies of Sanguisorba identification and provides insights into the evolution of the genus Sanguisorba.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1354
Author(s):  
Slimane Khayi ◽  
Fatima Gaboun ◽  
Stacy Pirro ◽  
Tatiana Tatusova ◽  
Abdelhamid El Mousadik ◽  
...  

Argania spinosa (Sapotaceae), an important endemic Moroccan oil tree, is a primary source of argan oil, which has numerous dietary and medicinal proprieties. The plant species occupies the mid-western part of Morocco and provides great environmental and socioeconomic benefits. The complete chloroplast (cp) genome of A. spinosa was sequenced, assembled, and analyzed in comparison with those of two Sapotaceae members. The A. spinosa cp genome is 158,848 bp long, with an average GC content of 36.8%. The cp genome exhibits a typical quadripartite and circular structure consisting of a pair of inverted regions (IR) of 25,945 bp in length separating small single-copy (SSC) and large single-copy (LSC) regions of 18,591 and 88,367 bp, respectively. The annotation of A. spinosa cp genome predicted 130 genes, including 85 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. A total of 44 long repeats and 88 simple sequence repeats (SSR) divided into mononucleotides (76), dinucleotides (7), trinucleotides (3), tetranucleotides (1), and hexanucleotides (1) were identified in the A. spinosa cp genome. Phylogenetic analyses using the maximum likelihood (ML) method were performed based on 69 protein-coding genes from 11 species of Ericales. The results confirmed the close position of A. spinosa to the Sideroxylon genus, supporting the revisiting of its taxonomic status. The complete chloroplast genome sequence will be valuable for further studies on the conservation and breeding of this medicinally and culinary important species and also contribute to clarifying the phylogenetic position of the species within Sapotaceae.


Sign in / Sign up

Export Citation Format

Share Document